
ERLANGEN REGIONAL

COMPUTING CENTER [RRZE]

Thirteen modern ways to fool the

masses with performance results on

parallel computers
Georg Hager

Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

GridKa School, 2018-08-29

2

The information contained in this talk is for general guidance on matters of interest only. The application and impact of laws can vary widely

based on the specific facts involved. Given the changing nature of laws, rules and regulations, and the inherent hazards of electronic

communication, there may be delays, omissions or inaccuracies in information contained in this talk. Accordingly, the information in this talk is

provided with the understanding that the authors and publishers are not herein engaged in rendering legal, accounting, tax, or other professional

advice and services. As such, it should not be used as a substitute for consultation with professional accounting, tax, legal or other competent

advisers. Before making any decision or taking any action, you should consult an HPC professional.

While we have made every attempt to ensure that the information contained in this talk has been obtained from reliable sources, we are not

responsible for any errors or omissions, or for the results obtained from the use of this information. All information in this talk is provided "as is",

with no guarantee of completeness, accuracy, timeliness or of the results obtained from the use of this information, and without warranty of any

kind, express or implied, including, but not limited to warranties of performance, merchantability and fitness for a particular purpose. In no event

will we, our related partnerships or corporations, or the partners, agents or employees thereof be liable to you or anyone else for any decision

made or action taken in reliance on the information in this talk or for any consequential, special or similar damages, even if advised of the

possibility of such damages.

Certain links in this talk connect to other websites maintained by third parties over whom we have no control. We make no representations as to

the accuracy or any other aspect of information contained in other talks, websites, or papers.

And finally, we take no responsibility whatsoever for the consequences of you showing these slides around and getting harassed, shouted at,

beaten, or spanked by your boss, your peers, your spouse, your kids, your mother, or anyone who might be offended because they don’t get the

inherent irony. So there.

Legal disclaimer

GridKa 2018 | Fooling the masses | Georg Hager

3

1. Quote only 32-bit performance results, not 64-bit results.

2. Present performance figures for an inner kernel, and then represent these figures as the

performance of the entire application.

3. Quietly employ assembly code and other low-level language constructs.

4. Scale up the problem size with the number of processors, but omit any mention of this fact.

5. Quote performance results projected to a full system.

6. Compare your results against scalar, unoptimized code on Crays.

7. When direct run time comparisons are required, compare with an old code on an obsolete system.

8. If MFLOPS rates must be quoted, base the operation count on the parallel implementation, not on the best

sequential implementation.

9. Quote performance in terms of processor utilization, parallel speedups or MFLOPS per dollar.

10. Mutilate the algorithm used in the parallel implementation to match the architecture.

11. Measure parallel run times on a dedicated system, but measure conventional run times in a busy

environment.

12. If all else fails, show pretty pictures and animated videos, and don't talk about performance.

1991

GridKa 2018 | Fooling the masses | Georg Hager

David H. Bailey

Supercomputing Review, August 1991, p. 54-55

“Twelve Ways to Fool the Masses When Giving Performance

Results on Parallel Computers”

4

What supercomputing was like in 1991

GridKa 2018 | Fooling the masses | Georg Hager

If you were plowing a field, which

would you rather use?

Two strong oxen

or 1024 chickens?

(Attributed to

Seymour Cray) ©
 T

o
m

 T
ro

w
e
r

5

What supercomputing was like in 1991

GridKa 2018 | Fooling the masses | Georg Hager

System-specific

optimizations

32-bit vs. 64-bit FP

arithmetic

No parallelization

standards

Strong I/O facilities

Vectorization
(the real one, not the SSE/AVX c**p)

SIMD/MIMD

parallelism

6

Today we have…

Multicore processors

with shared/separate caches,

shared data paths

Hybrid, hierarchical systems

with multi-socket, multi-core, ccNUMA, accelerators, heterogeneous networks

GridKa 2018 | Fooling the masses | Georg Hager

7

Today we have…

Ants all over the place

GPUs, Xeon Phi,...

GridKa 2018 | Fooling the masses | Georg Hager

8

Today we have…

Commodity everywhere

x86-type processors, cost-effective interconnects,

GPUs, GNU/Linux

GridKa 2018 | Fooling the masses | Georg Hager

9GridKa 2018 | Fooling the masses | Georg Hager

The landscape of High Performance

Computing and the way we think about

HPC has changed over the last 25 years,

and we need an update!

Still, many of Bailey’s points are valid without change

10GridKa 2018 | Fooling the masses | Georg Hager

<irony>

11

Report scalability, not absolute performance or time to solution.

Speedup:

“Good” scalability ↔ 𝑆 𝑁 ≈ 𝑁

Consequence: Makes your slow but scalable system look better

Stunt 1

GridKa 2018 | Fooling the masses | Georg Hager

𝑆 𝑁 =

work
time

with 𝑁 workers

work
time

with 1 worker

12

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

NEC Cluster

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70

NEC Cluster

Stunt 1: Scalability vs. performance

And… instant success!

GridKa 2018 | Fooling the masses | Georg Hager

P
e
rf

o
rm

a
n
c
e

(w
o
rk

/t
im

e
)

S
p
e
e
d
u
p

CPUs or nodes

13

Stunt 2

Slow down code execution.

Strong scaling, “Non-execution”

overhead 𝑐(𝑁)

Slow down execution by a factor of 𝜇 > 1:

I.e., if there is overhead, the slow code/machine scales better

GridKa 2018 | Fooling the masses | Georg Hager

𝑆 𝑁 =
1

𝑠 +
1 − 𝑠
𝑁

+ 𝑐(𝑁)

𝑆 𝑁 =
𝜇

𝜇 𝑠 +
1 − 𝑠
𝑁

+ 𝑐(𝑁)
=

1

𝑠 +
1 − 𝑠
𝑁

+ 𝑐(𝑁)/𝜇

14

Corollaries:

1. Do not use aggressive compiler optimization or manual tuning.

Reason: reproducibility of results!

2. Use C++, Java, Perl, Python, Lua, or MS-Basic for hot spots.

Reason: maintainability and flexibility!

3. Scalability is still bad?

 Parallelize some short loops with OpenMP.

Reason: hybrid machines need hybrid code, don’t they?

Time to solution?  “My code scales on Exascale systems.

Hold my beer…”

Stunt 2: Slow computing

GridKa 2018 | Fooling the masses | Georg Hager

-O3

-O0

C++

15

If scalability doesn’t look good enough, use a logarithmic scale to

drive your point home.

Stunt 3 (The power of obfuscation, part I)

GridKa 2018 | Fooling the masses | Georg Hager

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Speedup Ideal

1

10

100

1 10 100

Speedup Ideal

0

10

20

30

40

50

60

70

1 10 100

Speedup Ideal

1. Linear plot: bad scaling,

strange things at N=32

2. Log-log plot: better scaling,

but still the N=32 problem

3. Log-linear plot: N=32

problem gone

4. … and remove the ideal

scaling line to make it

perfect!

0

5

10

15

20

25

30

35

40

45

1 10 100

Speedup

16

Instead of performance, plot absolute runtime vs. CPU count

Very, very popular indeed!

Nobody will be able to tell

whether your code actually

scales

Caveat: Make sure to use

linear scales!

Stunt 4 (The power of obfuscation, part II)

GridKa 2018 | Fooling the masses | Georg Hager

???

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80
nodes

R
u
n
ti
m

e

17

Stunt 4 (but general): Eye candy can’t hurt

GridKa 2018 | Fooling the masses | Georg Hager

System A

System B
0

0.2

0.4

0.6

0.8

1

1

2

4

8

16
32

64

18

Play mysterious.

Goal: Boost your citation count without

giving away your dirty secrets

Idea: They can’t question what they

can’t reproduce

Method: Make it hard. Really hard.

Stunt 5

GridKa 2018 | Fooling the masses | Georg Hager

19

Test case problem size # Iterations Runtime [s] Performance

car see page 456 500 2.34443521
1.02x

competition

plane 300
3

sufficient 3.14159 doesn’t crash

train Putin’s ego roughly 112 0.11991
0.64 cache

misses per pJ

chicken 0.03 bu whatever 42.0 1 egg/day

Stunt 5: Play mysterious.

GridKa 2018 | Fooling the masses | Georg Hager

20

“For benchmarking we used an Intel Xeon under Ubuntu 16.04 LTS running Linux

4.4.0-131-generic #157-Ubuntu.”

“Building the software requires gcc 2.95.2, MS Brainfuck 0.45pre, and

Glasgow Haskell (< v7.2.1 but > v7.6.2) under CP/M 3.0”

“We are, on average over all test cases, 34% faster than the median of all

competing frameworks.”

“Our code is available for download at http://goodstuffxxx.ru/koalemos”

Stunt 5: Play mysterious.

GridKa 2018 | Fooling the masses | Georg Hager

21

Stunt 6

GridKa 2018 | Fooling the masses | Georg Hager

Worship the god of automation.

Computers are for automating tasks. Why not automate

the process of performance analysis?

Automate everything. Use as many tools as possible and plug

them together.

Use machine learning. Always. Throw in some big data for good measure.

Use at least three different languages (may be automatic).

Give the whole thing a catchy name.

Tool 1

Tool
2

Tool
3

22

Stunt 6: The power of automation

GridKa 2018 | Fooling the masses | Georg Hager

Κοάλεμος performance

meta-analysis framework

23

Emphasize the quality of your shiny accelerator

code by comparing it with scalar, unoptimized

code on a single core of an old standard CPU.

And use GCC 2.7.2.

Besides, the compiler will do what’s necessary

on the CPU!

Corollary: Use single precision on the GPU but double

precision on the CPU.

Stunt 7

GridKa 2018 | Fooling the masses | Georg Hager

24

Stunt 7: Fabricating a usefully slow CPU baseline

GridKa 2018 | Fooling the masses | Georg Hager

Dense matrix-vector

multiplication

(N=4500), Nvidia

Tesla C2050 vs. Intel

dual Westmere

Bad

compiler

Disable

SIMD

Go serial

Change from single

precision to double

precision

27

If you ask the right

questions, accelerators

at scale give you

arbitraty speedup!

Speedup = (How many

CPUs do we need to

outcompute N

GPUs?)/N

Stunt 7a

GridKa 2018 | Fooling the masses | Georg Hager

2048 CPUs

for 32 GPUs

 64x!

5x

10x

∞ CPUs

for 64 GPUs???

28

Quote GFlops, MIps, or any other irrelevant interesting metric

instead of (inverse) time to solution.

Floptimizaton:

Stunt 8

for(i=0; i<N; ++i)

for(j=0; j<N; ++j)

b[i][j] = 0.25*(a[i-1][j]+a[i+1][j]+a[i][j-1]+a[i][j+1]);

for(i=0; i<N; ++i)

for(j=0; j<N; ++j)

b[i][j] = 0.25*a[i-1][j]+0.25*a[i+1][j]

+0.25*a[i][j-1]+0.25*a[i][j+1];

GridKa 2018 | Fooling the masses | Georg Hager

29

Stunt 8: Redefine “performance” appropriately

GridKa 2018 | Fooling the masses | Georg Hager

30

Ignore affinity and topology issues. Real scientists are not

bothered by such details.

Stunt 9

P
C
C

P
C
C

P
C
C

MI

Memory

P
C
C

C

P
C
C

P
C
C

P
C
C

MI

Memory

P
C
C

C

Shared cache shortage/re-use

ccNUMA page placement

Bandwidth contention

Intra-node MPI

OpenMP overhead

OS buffer cache

SMT

GridKa 2018 | Fooling the masses | Georg Hager

31

Always emphasize the “interesting” part of your work.

Ever thought about having

a diet coke with your bucket

of chicken wings?

Stunt 10 (The power of obfuscation, part III)

+

GridKa 2018 | Fooling the masses | Georg Hager

32

“Fig. 3 demonstrates the

benefit of our new

communication scheme,

which reduces overall

communication volume by

70% (cf. Tab. 2)”

Stunt 10: Diet Coke

0

100

200

300

400

500

600

Original Optimized
T

im
e

Computation Communication

GridKa 2018 | Fooling the masses | Georg Hager

33

If they can’t see it,

zoom in a little!

Stunt 10: Diet Coke

GridKa 2018 | Fooling the masses | Georg Hager

34

Stunt 10: Diet Coke

GridKa 2018 | Fooling the masses | Georg Hager

http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png

h
tt

p
s
:/

/x
k
c
d

.c
o

m
/2

0
2

3
/

http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png
https://xkcd.com/2023/

35

Show data. Plenty. And then some.

Make people see the breathtaking

complexity of what you did. Show

at least 8 graphs per plot, all in

bright pastel colors, with different

symbols.

Insight?

“It’s complicated!”

Stunt 11 (The power of obfuscation, part IV)

0

50

100

150

200

250

300

0 200 400 600

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

Machine 7

Machine 8

nodes/CPUs

P
e

rf
o

rm
a

n
c
e
GridKa 2018 | Fooling the masses | Georg Hager

36

Stunt 11: Show data. Plenty. And then some.

GridKa 2018 | Fooling the masses | Georg Hager

37

If they get you cornered, blame it all on “contention”.

They will understand and

nod knowingly.

Corollary: Depending on

the audience, bad prefetching

efficiency may work just as fine.

Stunt 12

GridKa 2018 | Fooling the masses | Georg Hager

38

“Technical-detail-not-under-my-control”:
 Stupid compilers: “Our version of the code shows slightly worse single-thread performance, which is presumably due

to the limited optimization capabilities of the compiler.”

 Out-of-order execution (or lack thereof): “Processor A shows better performance than processor B possibly because

of A’s superior out-of-order processing capabilities.”

 L1 instruction cache misses: “As shown in Table 1, our optimized code version B is faster because it has 20% fewer

L1 instruction cache misses than version A.”

 TLB misses: “Performance shows a gradual breakdown with growing problem size. This may be caused by

excessive penalties due to TLB misses.“

 Bad prefetching: “Performance does not scale beyond four cores on a socket. We attribute this to problems with the

prefetching hardware.”

 Bank conflicts: “Processor X has only [sic!] eight cache banks, which may explain the large fluctuations in

performance vs. problem size.”

 Transient network errors: “In contrast to other high-performance networks such as Cray’s Gemini, InfiniBand does

not have link-level error detection, which impacts the scalability of our highly parallel code.”

 OS jitter: “Beyond eight nodes our implementation essentially stops scaling. Since the cluster runs vanilla [insert your

dearly hated distro here] Linux OS images, operating system noise (“OS jitter”) is the likely cause for this failure.”

Stunt 12: Blame some very technical issue

GridKa 2018 | Fooling the masses | Georg Hager

39

If all else fails, show pretty pictures and animated videos, and

don’t talk about performance.

Stunt 13

GridKa 2018 | Fooling the masses | Georg Hager

40GridKa 2018 | Fooling the masses | Georg Hager

</irony>

THANK YOU!

Read more at:

http://tiny.cc/foolingthemasses

(Stunt numbers may be different)

Ideas? Observations?  mailto:georg.hager@fau.de

GridKa 2018 | Fooling the masses | Georg Hager

http://tiny.cc/foolingthemasses

