For final slides and example code see:

https://tiny.cc/NLPE-SC18 r r

ﬁ_
= —

Node-Level Performance
Engineering

Georg Hager, Jan Eitzinger, Gerhard Wellein

Erlangen Regional Computing Center (RRZE)
and Department of Computer Science

University of Erlangen-Nuremberg

SC18 full-day tutorial S’»
November 11, 2018 e é &18
Dallas, TX A\

Dallas, |hpc
TX |inspires.
*: slide updated

Agenda rrEE
= Preliminaries 08:30
= |ntroduction to multicore architecture

= Threads, cores, SIMD, caches, chips, sockets, ccNUMA
= Multicore tools (part I) 10:00
= Microbenchmarking for architectural exploration 10:30

= Streaming benchmarks

= Hardware bottlenecks
= Node-level performance modeling (part 1)

= The Roofline Model 12:00
= Lunch break
= Multicore tools (part II) 13:30
= Node-level performance modeling (part Il)

= Case studies: Jacobi solver, sparse MVM, tall & skinny MM 15:00
= Optimal resource utilization 15:30

= SIMD parallelism

= ccNUMA

= OpenMP synchronization and multicores 17:00

(c) RRZE 2018 Node-Level Performance Engineering

Prelude:
Scalability 4 the win!

Scalability Myth: Code scalability is the key issue rr?:

1SOMP PARALLEL DO
do k =1 Nk
do j = , Nj;, do i =1 , Ni
y(i,j, k)= b*(=x(i-1,3j,k)+ x(i+l,3, k)+ x(i,3-1,k)+
x(i,j+1,k)+ x(1i,3,k-1)+ x(i,],k+1))
enddo; enddo | | | | | | |

Il_l = ~

enddo gl _
!SOMP END PARALLEL DO . 3D Stencil Update

7 ("Jacob1") —

Changing only the compile 6_— |

options makes this code. R 5-_ =8 Version | O 1

scalable on an 8-core chip i &8 Version 2 s Prepared for]

2 41 the highly —

________________________________ - | -

ﬁ i parallel era!]

i i |
[-03 -xAVX

#cores

(c) RRZE 2018 Node-Level Performance Engineering 5

Scalability Myth: Code scalability is the key issue rr

[m]

1 SOMP PARALLEL DO
do k =1, Nk
do j=1, Nj; doi=1, Ni
y(i,j, k)= b*(x(i-1,3,k)+ x(i+l,j, k)+ x(i,j-1,k)+
x(i,3+1,k)+ x(i,3,k-1)+ x(i,3,k+1))

enddo; enddo 1500 T T T T T T T T
enddo " - = u
Upper limit from simple L [T
performance model: : = Vorsidn 1
35 GB/s & 24 Byte/update /\OU{) i —e Versijn 2

3D Stencil Update
("Jacobi")

500

erformance [MLUP/s]

Single core/socket efficiency —
is key issue!

sl
s
| =R
2| =R
R
BERIE]
FE=F]
UL FE=R
Cearion

fcores

(c) RRZE 2018 Node-Level Performance Engineering 6

Questions to ask in high performance computing rr?:

Do | understand the performance behavior of my code?
= Does the performance match a model | have made?

What is the optimal performance for my code on a given machine?
= High Performance Computing == Computing at the bottleneck

= Can | change my code so that the “optimal performance” gets
higher?

= Circumventing/ameliorating the impact of the bottleneck

= My model does not work — what’s wrong?
= This is the good case, because you learn something

= Performance monitoring / microbenchmarking may help clear up the
situation

(c) RRZE 2018 Node-Level Performance Engineering 7

Introduction:
Modern node architecture

A glance at basic core features:

pipelining, superscalarity, SMT, SIMD
Caches and data transfers through the memory hierarchy
Accelerators

Bottlenecks & hardware-software interaction

Multi-core today: Intel Xeon 2600v4 (2016) rr7|:

= Xeon E5-2600v4 “Broadwell EP”:
Up to 22 cores running at 2+ GHz (+ “Turbo Mode™: 3.5+ GHz)

= Simultaneous Multithreading

- reports as 44-way chip

= 7.2 Billion Transistors / 14 nm

= Die size: 456 mm?

“Cluster on Die”
% (CoD) mode

Optional:

[Me| pry

(c) RRZE 2018

"""""""" 5 2017: Skylake architecture
- E = Mesh instead of ring
. 2 ; interconnect
1 = Sub-NUMA clustering

Me pry | = Upto 28 cores

2-socket server

= 2.5 - 3.8 GHz (top bin)

Node-Level Performance Engineering 9

General-purpose cache based microprocessor core

Arithmetic
logic

unit

Input/Output

Memory

Stored-program computer

= Implements “Stored
Program Computer”
concept (Turing 1936)

= Similar designs on all
modern systems

= (Still) multiple potential
bottlenecks

= The clock cycle is the
“heartbeat” of the core

(c) RRZE 2018

L1 Icache

—

[T ==

Modern CPU core

< Reorder buffer / Register renaming -
QQ
% ;,i—_J Scheduler
Q
o
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
aw || aw | [ioan | ioao | sTomE. AW
“muL | | app ADRS | | ADRs JMP
DIV I

L1 Dcache 4+> Memory control

| l l - D:ia flow

Node-Level Performance Engineering

/

Control flow

Pot. bottleneck

10

Pipelining of arithmetic/functional units rr?_

" |dea:
= Split complex instruction into several simple / fast steps (stages)
= Each step takes the same amount of time, e.g. a single cycle
= Execute different steps on different instructions at the same time (in parallel)

= Allows for shorter cycle times (simpler logic circuits), e.g.:
= floating point multiplication takes 5 cycles, but
= processor can work on 5 different multiplications simultaneously
= one result at each cycle after the pipeline is full

= Drawback:
= Pipeline must be filled — sufficient # of independent instructions required

= Requires complex instruction scheduling by compiler/hardware
= software-pipelining / out-of-order execution

= Pipelining is widely used in modern computer architectures

(c) RRZE 2018 Node-Level Performance Engineering

11

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N rrEE

1 2 3 4 5 N N+1 N+2 N+3 N+4
Cycle
Separate B(l)| | B(2)| | B(3)| | B(4)| | B(5) B (N) |< >|
mant./exp. C(1l)| | €(2)| | C(3)]| | C(4)]| | €(5) o C(N) Wind-down
Multiply B(1)| | B(2)| | B(3)| | B(4) B(n-1)| | B{N)
mantissas C(1) C(2) C({3) C(4) e cn-1)| | C(N)
Add B(1)| | B(2)| | B(3) B(N-2)| |B(N-1)| | B(N)
exponents C{l) C{2) C(3) T ciN-2)| |cin-1y | C{N)
Normalize A A A
result R R@Y o nssy) | n-2y| | ve1y| | ROD
Insert Wind-up A A A A
sign [=20 | e | o3| | -2y | ee1y| | 2D

First result is available after 5 cycles (=latency of pipeline)!
Wind-up/-down phases: Empty pipeline stages

(c) RRZE 2018 Node-Level Performance Engineering 12

Pipelining: The Instruction pipeline rr7|:

= Besides arithmetic & functional units, instruction execution itself is
pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction Decode
from L1l Instruction

Hardware Pipelining on processor (all units can run concurrently):

1 Fetch Instruction 1
from L1l
2Al Fetch Instruction 2 Decode
. from L1| Instruction 1
Il Fetch Instruction 3 Decode
3 from L1l Instruction 2
Il Fetch Instruction 4 Decode
4 ! from L1I Instruction 3

Branches can stall this pipeline! (Speculative Execution, Predication)
Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

(c) RRZE 2018 Node-Level Performance Engineering 13

]] ﬁ—
Superscalar Processors — Instruction Level Parallelism rri:

Multiple units enable use of Instruction Level Parallelism (ILP):
Instruction stream is “parallelized” on the fly

Fn'l-nln lnctriintinn A1
Fr\'l-r\lf\ lnctriintinn D

Fn'l'nln lnectviintinn 9D 4-Way

. Fetch Instruction 1 SSaazas superscalar
H ... from LU PRAEAda ”

‘I—t Fetch Instruction 5 Decode
| from L1| Instruction 1

-OTAN TNCTrIINTINN Z IR VaYalaVYala)

_ Fetch Instruction 9 Decode
| from L1l Instruction 5

-AOTAN TNCTriintiNnnN 7i IR VaYalaVYala)

. Fetch Instruction 13 Decode
from L1l Instruction 9

Issuing m concurrent instructions per cycle: m-way superscalar

Modern processors are 3- to 6-way superscalar &
can perform 2 or 4 floating point operations per cycles

(c) RRZE 2018 Node-Level Performance Engineering 14

Core details: Simultaneous multi-threading (SMT)
“logical” cores = multiple threads/processes run concurrently

SMT principle (2-way example):

Execution units

Y
|1
S B —=+=— Registers
O L1D
S L] ']
'g D D D — L2 cache — L TaTh‘T _ 4
-’:85 D D |:| N |1
2 u L[L I
@ Memor | cache _| Y
’ | | | |~—=| control
1’
% %/ - W \:’I |
’ [/
E L] Uy 7 SR e L"r:: u //,,'52/}3-}253/
p) []] ZEP) cache? L TaCVE/
L m @ | R
S 27 v e
Memofy ’27 R , cache 7
Y oy |e—e Control i

(c) RRZE 2018 Node-Level Performance Engineering

Execution units

Core details: SIMD processing rr7|:

= Single Instruction Multiple Data (SIMD) operations allow the concurrent
execution of the same operation on “wide” registers

= x86 SIMD instruction sets:
= SSE: register width = 128 Bit - 2 double precision floating point operands
= AVX: register width = 256 Bit - 4 double precision floating point operands
= AXV512: you get it.

= Adding two registers holding double precision floating point operands

RO R1 R2 RO R1 R2
F [[
SIMD execution:
V64ADD [RO,R1] 2R2

Scalar execution:
64 Bit - G R2< ADD [RO,R1]

(c) RRZE 2018 Node-Level Performance Engineering 16

There is no single driving force for single core performance! Eﬁ
- I

Maximum floating point (FP) performance:

L3 P core / nsup / nFMA/'nSIM /
Super- SIMD Clock
LU scalarity factor factor Speed
AR
representatives | [inst./cy] [ops/inst.] Gey/s] | [GF/s]
Nehalem 2 Q1/2009 X5570 2.93 11.7
Westmere 2 1 2 Q1/2010 X5650 2.66 10.6
Sandy Bridge 2 1 4 Q1/2012 E5-2680 2.7 21.6
lvy Bridge 2 1 4 Q3/2013 E5-2660 v2 2.2 17.6
Haswell 2 2 4 Q3/2014 E5-2695v3 2.3 36.8
Broadwell 2 2 4 Q1/2016 E5-2699 v4 2.2 35.2
Skylake 2 2 8 Q3/2017 Gold 6148 2.4 76.8
AMD Zen 2 2 2 Q1/2017 Epyc 7451 2.3 18.4
IBM POWERS 2 2 2 Q2/2014 $822LC 293 234 Y7

Registers and caches: Data transfers in a memory hierarchy rr?:
How does data travel from memory to the CPU and back?

= Remember: Caches are organized
in cache lines (e.g., 64 bytes) LD C(1)

MISS
= Only complete cache lines are
transferred between memory
hierarchy levels (except registers)

= MISS: Load or store instruction does
not find the data in a cache level
- CL transfer required

CPU registers

ST A(1)
MISS

Ei::ﬂz;}HlT

N

write| [evict
allocate| [(delayed)

3CL
transfers

= Example: Array copy A(:)=C(:)

(c) RRZE 2018 Node-Level Performance Engineering 18

Putting the cores & caches together

[T =
AMD Epyc 7451 24-Core Processor («Naples») | R
Compute node = 24 cores per socket
[eeww | [wowen | = 4 chips w/ 6 cores each (“Zeppelin” die)
?WWHW — WHWIT = 3 cores share 8MB L3 (“Core Complex”, “CCX")
o || EEEEEE EarE o = DDR4-2666 memory interface with 2 channels
b ol] Fa[a o[alu)] alsa y
< S >< S per chip
3) 1 e o
RN e A L e e R = MemBW per node:
77777 u"unwv'mmu-—ruumvlmmu T 16 chx 8 byte X 2.666 GHz = 341 GB/s
B -
[wmn) [e = Two-way SMT
= Two 256-bit (actually 4 128-bit) SIMD FP units
s = AVX2, 8 flops/cycle
edb bl | 39 Ki
e, e— IB L1 data cache per core
. faliaale IXILl = 512 KiB L2 cache per core
-§ S/ S O S A O Ok i e O = 2 x 8 MiB L3 cache per chip
O EESE s e = 64 MiB L3 cache per socket
e I

D }L

ccNUMA memory architecture
Infinity fabric between CCX'’s and between chips

(c) RRZE 2018 Node-Level Performance Engineering 19

Interlude:
A glance at current accelerator technology

NVidia “Pascal” GP100

VS.
Intel Xeon Phi “Knights Landing”

NVidia Pascal GP100 block diagram

Architecture
15.3 B Transistors
~ 1.4 GHz clock speed
Up to 60 “SM” units

64 SP “cores” each
32 DP “cores” each

2:1 SP:DP
performance

5.7 TFlop/s DP peak
4 MB L2 Cache
4096-bit HBM2

MemBW ~ 732 GB/s
(theoretical)

MemBW ~ 510 GB/s
(measured)

© NVIDIA Corp.

(c) RRZE 2018 Node-Level Performance Engineering 21

Intel Xeon Phi “Knights Landing” block diagram

[MCDRAM][MCDRAM][MCDRAM][MCDRAM

]
DDR4

32KiB L1 | 32KiB L1

8 B Transistors

TviB L2
36 tiles
(72 cores) Architecture
max.

DDR4
]

[MCDRAM]{ MCDRAM][MCDRAM][MCDRAM]

Up to 1.5 GHz clock speed

Up to 36x2 cores (2D mesh)
= 2x 512-bit SIMD units (VPU) each
= 4-way SMT

3.5 TFlop/s DP peak (SP 2x)

36 MiB L2 Cache

16 GiB MCDRAM
= MemBW ~ 470 GB/s (measured)

Large DDR4 main memory
= MemBW ~ 90 GB/s (measured)

(c) RRZE 2018 Node-Level Performance Engineering 22

Trading single thread performance for parallelism:
GPGPUs vs. CPUs

Control ALU ALU

GPU vs. CPU
light speed estimate ALU AL

(per device)

MemBW ~ 5-10x _
Peak ~ 5-10x CPU GPU
2x Intel Xeon E5- Intel Xeon Phi 7250 | NVidia Tesla P100
2697v4 "Broadwell” “Knights Landing” “Pascal”
Cores@Clock 2x18 @ 22.3 GHz 68 @ 1.4 GHz 56 SMs @ ~1.3 GHz
SP Performance/core =>73.6 GFlop/s 89.6 GFlop/s ~166 GFlop/s
Threads@STREAM ~8 ~40 > 10000
SP peak =2.6 TFlop/s 6.1 TFlop/s ~9.3 TFlop/s
Stream BW (meas.) 2 X 62.5 GB/s 450 GB/s (MCDRAM) 510 GB/s
Transistors / TDP ~2X7 Billion / 2x145 W 8 Billion / 215W 14 Billion/300W

(c) RRZE 2018

Node-Level Performance Engineering

23

Node topology and
programming models

Parallelism in a modern compute node

Parallel and shared resources (potential bottlenecks!) within a shared-
memory node

© o

Other I/O

‘ Memory ‘ { Memory ‘
Parallel resources: Shared resources:
= Execution/SIMD units @) = Outer cache level per socket)
= Cores @ = Memory bus per socket @
= Inner cache levels 9 = Intersocket link @
= Sockets / ccNUMA domains @ = PCle bus(es) @
= Multiple accelerators @ = Other 1/O resources @

How does your application react to all of those details?

(c) RRZE 2018 Node-Level Performance Engineering 25

Parallel programming models:
Pure MPI

Machine structure is invisible to user:
- Very simple programming mode| mmm)>
- MPI “knows what to do”!?
Performance issues
Intranode vs. internode MPI
Node/system topology

vommunication network

(c) RRZE 2018 Node-Level Performance Engineering 27

Parallel programming models: rr?_
Pure threading on the node

Machine structure is invisible to user

- Very simple programming mode| mmm)> master thread
Threading SW (OpenMP, pthreads, v
TBB,...) should know about the details fork 7 ~
Some support since OpenMP 4.0 oarallel
Performance issues v ~ region
Synchronization overhead join /
=
Memory access serial
Node topology " region
\ 4 y
PlP|P|P P P P P
L1 I I I | team of
| LD L1D Lip Lip L L1D L1D Lo ||
i i} L2 R | Liz | Li L2 Il L2 L2 i v threads
‘ . coherent | |
link

Memo ry *}W\\\\\\\\\\\\\\\[\\l Memo ry

(c) RRZE 2018 Node-Level Performance Engineering 28

Conclusions about architecture rr?:

= Modern computer architecture has a rich “topology”

Node-level hardware parallelism takes many forms
= Sockets/devices — CPU: 1-8, GPGPU: 1-6
= Cores — moderate (CPU: 4-16) to massive (GPGPU: 1000’s)
= SIMD — moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)
= Superscalarity (CPU: 2-6)

= Exploiting performance: parallelism + bottleneck awareness
= “High Performance Computing” == computing at a bottleneck

= Performance of programming models is sensitive to architecture
= Topology/affinity influences overheads
= Standards do not contain (many) topology-aware features

= Apart from overheads, performance features are largely independent of the
programming model

(c) RRZE 2018 Node-Level Performance Engineering 30

Multicore Performance and Tools

Tools for Node-level Performance Engineering rrEE

Gather Node Information
hwloc, likwid-topology, likwid-powermeter

Affinity control and data placement
OpenMP and MPI runtime environments, hwloc, numactl, likwid-pin

Runtime Profiling
Compilers, gprof, HPC Toolkit, ...

Performance Profilers
Intel Vtune™, likwid-perfctr, PAPI based tools, Linux perf, ...

Microbenchmarking
STREAM, likwid-bench, Imbench

(c) RRZE 2018 Node-Level Performance Engineering 32

LIKWID performance tools rr7|:

LIKWID tool suite:

Like

|
Knew
What
I’'m
Doing

Open source tool collection J. Treibig, G. Hager, G. Wellein: LIKWID: A

lightweight performance-oriented tool suite for x86
(d evelo P ed at RRZ E) multicore environments. PSTI2010, Sep 13-16, 2010,

httpS //g ithub.com/RRZE-HPC/likwid San Diego, CA http://arxiv.org/abs/1004.4431

(c) RRZE 2018 Node-Level Performance Engineering 33

Output of 1likwid-topology -g —r—

on one node of Intel Haswell-EP L p—
CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz
CPU type: Intel Xeon Haswell EN/EP/EX processor

CPU stepping: 2
hhkkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhhkhhkhhhkhkhhhkhkhhhkhkhhhhhkhhhhhkhhhkhkhhhkhkhhhkhkhhhkhkhkhhhkhkhkhkhkkkhk

Hardware Thread Topology
hhkkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhhkhkhkhhhkhhkhhhkhkhhhkhkhhhhhkhhhhkhkhhhhkhhhkhkhhhkhkhhkhkhkhkhhkhkhkhkhkkkhk

Sockets: 2

Cores per socket: 14

Threads per core: 2

HWThread Thread Core Socket Available

0 0 0 0 *

1 0 1 0 *

43 1 1 1 *

44 1 2 1 *

Socket 0: (0281292 303 3143253362347 358369 37 103811 39 12 40 13 41)

Socket 1: (14 42 15 43 16 44 17 45 18 46 19 47 20 48 21 49 22 50 23 51 24 52 25 53 26 54 27 55)

__ All physical

AEE KA KKK KA A A AR AR A A A A A AR A A A A Ak Ak Ak Ak hkkhkhkhkhkhkhkkhkhkhk Ak hkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkkkk
processor IDs

Cache Topology
hhkkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhhkhkhkhhhkhkhkhhhkhkhkhhhkhkhkhhhkhkhkhhhkhhkhhhkhkhkhhhkhkhkhhhkhkhrhhkix
Level: 1

Size: 32 kB

Cache groups: (028) (129) (230) (331) (432) (533) (634) (735) (836) (937) (1038) (11 39) (12 40) (13 41
) (14 42) (1543) (16 44) (17 45) (18 46) (19 47) (2048) (21 49) (2250) (2351) (2452) (2553) (2654) (27 55)

Size: 256 kB

Cache groups: (028) (129) (230) (331) (432) (533) (634) (735) (836) (937) (1038) (1139) (12 40) (13 41
) (14 42) (15 43) (16 44) (17 45) (18 46) (19 47) (20 48) (21 49) (2250) (2351) (2452) (2553) (2654) (27 55)
Level: 3

Size: 17 MB

Cache groups: (0281292 3033143252336234) (7358369 37 10 38 11 39 12 40 13 41) (14 42 15 43 16 44 17 45 18 46 19 47 20 48)
(21 49 22 50 23 51 24 52 25 53 26 54 27 55)

(c) RRZE 2018 Node-Level Performance Engineering 35

Output of likwid-topology continued

hhkhkhkhkhkkkhkhkhkhkhkhkhkhkhkkhkhkhkhhhkhkhkhkhkhkhkhkhkhhhkhhkhkhkhkhkhkhkhkhhhkhkhkhkhkkhkhkhhhhkhkhkhkkhkhkhkhkhkhhhkhkhkkkhkhkhhxx

NUMA Topology
e o ok e ok o ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok

NUMA domains: 4

Domain: 0

Processors: (028129 2 30 33143252336 34)
Distances: 10 21 31 31

Free memory: 13292.9 MB

Total memory: 15941.7 MB

Domain: 1

Processors: (7 35 8 36 9 37 10 38 11 39 12 40 13 41)
Distances: 21 10 31 31

Free memory: 13514 MB

Total memory: 16126.4 MB

Domain: 2

Processors: (14 42 15 43 16 44 17 45 18 46 19 47 20 48)
Distances: 31 31 10 21

Free memory: 15025.6 MB

Total memory: 16126.4 MB

Domain: 3

Processors: (21 49 22 50 23 51 24 52 25 53 26 54 27 55)
Distances: 31 31 21 10

Free memory: 15488.9 MB

Total memory: 16126 MB

(c) RRZE 2018 Node-Level Performance Engineering 36

©
(D)
>
-
—
-
o
o
>
(@)
@)
@)
o
o
)
1
=
-
Y
@)
)
-
(@R
)
-
@)

Cluster on die mode

dhkhkkdkhkhkhkhkhhkdkhkhkhhdhhhhhhhdkhhkhhhhdhhhhhdkdkhhkhhhdkdhhhhdhhkhhkhhhdkdkdkhkhhhkkhkhhhhkhkhkhkhhhkkhkhkhkhhk and SM I enabledl
dhkhkkdkhkhkhkhkhhkhkhkhkhhdhkhhhkhhhdkhkhkhhhdhdhhhhhdkdkhhkhhhdkdkhhhdhhhkhkhhhdkdkdkhkhhhkhkhkhhhhkhkhkhkhhhkhkhkhkhkhhk

Graphical Topology
Socket 0:

+—++—++—+ + —+
1 [[[1
1 [[Y « I I | I
[R - I B R R B 1
[R I - I
1 TN I
[B I R B I A B 1
(= I [[1
1 [N [N [1
+ —+ 4+ —+ + —+ 1 1

1 1
+ —+ + —+ + —+ 1
1 [[[1
1 [[[1
o 11 [[1
[R [[1
1 [N [N [N 1
N [[1
[I [[1
1 [N [[1
oA = !
+ —+ + —+ + —+ 1 1
1 [[[1
1 [[« 1
Fo MM 1
[+ T N ™ I IR B I | 1
1 [A I T B R 1
1 [[[1
_H__3__2__ 1
1 [N [[1
+ —+ + —+ + —+ 1

1 1
+ -+ + —+ + —+ 1
1 [[[1
1 [[[1
I o0 I I [[1
_3__m__ __m_
1 [~ R
o I I o I 1 | L
oy 1 [N [1
1 [[[1
+ —+ + —+ + —+ 1 I

1 1
+—F + —F F —+ i
1 [[[I
1 [[[I
_7__B__m__ 1
IF'en I 1 & 1 1 © I | 1
1 [~ R S R 1
Iy I I} I I oy I I 1
1 [N [N [1
1 [[[1
+ —+ + —+ + —+ 1

1 1
+ —+ + —+ + —+ 1
I [[[1
1 [[[1
_6__B__m__ I
IF'en I 1 & 1 1 © I 1 1
1 [I T B Y-S 1
Il | I en 1 I oy I | 1
1 [[[1
1 [[[1
ot — !
+ —+ + —+ + —+ 1
1 [[[1
1 [| Y « B I | 1
' I ;g M 1
IFen I 1 & 1 1 © I 1 1
1 [T R Y-S I 1
I'~1 1 en 1 1 o I 1 1
1 [[[1
1 [[[1
+ —+ 4+ —++ —+ + —+
+ —+ + —+ + —+ + —+
I [[[I
I [[R I
[T T W T B~ B B 1
Fren I 1 M 1 1 O I 1
I [~ T T Y-S I
Fro 1 1T en 1 I 1 1 I
1 [[[1
I [[[I
+—+ + —+ + =+ 1

1 1
+ —+ + —+ + —+ 1
1 [[[1
1 [LI s « I B | 1
Fen I 1 @ | 1 M 1 1
Fren I 1 M 1 1 O 1 | 1
I TN L I
T 1T en 1 N I
1 [[[1
1 [N [N [1
+ —+ + —+ + —+ 1

1 1
+ —+ + —+ + —+ 1
1 [[[1
1 [N LI I+ ¢ I B | 1
LI o O I N« ¢ Y IO V- B | 1
Fren 11 M 1 1 O I 1
1 TN 1
LI~ N N I+ ¢ T A B o I B | 1
1 [[[1
1 [[[1
+ —+ + —+ + —+ 1

1 1
+ —+ + —+ + —+ 1
1 [[[1
1 [N [I Y < I I | 1
_1__B__k__m_
rFren 11 M 11Ol I
1 TN~
[T B T B T S B IR
1 [[[1
1 [[[1
+ —+ + —+ + —+ 1

1 1
+ —+ + —+ + —+ 1
1 [[[1
1 [[I I | 1
[= I« T T S | I
Fren 1 M9 1
1 L IR S o T I N 7o B B | 1
I I 1T e 1N 1
1 [[[1
1 [[[I
+ —+ 4+ —+ + —+ 1

1 1
+ —+ + —+ + —+ 1
1 [N [N [1
1 [[I 1
Lo g M 1
[I o R N ™S IR I V- B I | 1
1 TN 1
I = 1T N 1
1 [[[1
1 [[[1
oA =t !
+ —+ + —+ + —+ 1 1
i [[[1
1 [[I 1
I 1 1 [| 1
[I o N B | e o 1
1 [| I I "o T B | 1
o 1 N 1
1 [[[1
1 [[[1
+—++—++—++—+

Socket 1:

+—+ +—+ + —+ + —+
1 [[[1
1 [LMoo 1
[T A« I R ™ B B 1
[T T A S T T B | 1
1 [I T B | 1
I~ r e N 1
[[[1
1 [[[1
+ —+ + —+ + —+ 1 1

1 1
+ —+ + —+ + —+ 1 1
1 [[[1
1 [[1
[O T A T ™ B 1
[T T B N A 1
1 T I A B | 1
[T T I I T T~ B B 1
[[[1
1 [[[1
+|++|++|+“ “
+ —+ 4+ —+ + —+ 1 1
1 [[[1
1 [Mmoo 1
[T T A« I ™ S B 1
[T T T N T TR B B |
1 [N R T I | 1
1 [[[1
- I R T T I |
1 [[[|
+ —+ + —+ + — + 1 I

1 1
+ —+ + —+ + — + I
1 [[[1
1 [[[1
_2__B__m__ 1
_5__k__6__m_
1 [~ T B Y- S R B S|
[I T T S B T~ B R |
1 [[[1
PN [[1
+ —+ + —+ + —+ 1 I

1 1
+ —+ + —+ + —+ I
1 [[[1
1 [[(I 1
_1__B__H__ 1
(IR R A R - I 1
1 [~ T R - S B 1
Ten I ITen 1l I oyt 1 1
1 [[[1
PN [[1
+ —+ + —+ + —+ 1 1

1 1
+ —+ + —+ + —+ 1 1
1 [[[1
I [[[1
_0__B__H__ 1
[T R A A A - B I
1 [T R Y- S 1
Tl Len 1 1 ot 1
[N [[1
1 [[[1
+|++|++|+“ “
+ —+ + —+ + —+ 1 1
1 1 1 1o 1
1 [g 1
Fov | L 1 1 & 11 1
[I I T~ B B - B 1
1 [~ T R T S | 1
[I T T S T T R B 1
[N [[1
1 [[[1
+—+ +—+ +—+ + -+
+—+ + —+ + —+ + —+
1 1o 1o 1 |
1 [T moro |
o | I 1 1 & 1 1
[I I A R - B 1
1 [~ T R T S |
lTo Il I en 1 I o I 1 1
[[[1
1 [[[1
+ =+ + —+ + —+ 1

1 1
+ —+ + —+ + —+ 1
1 [[1o |
1 [[I |
[S A I T ™ R B 1
[R I A B - B 1
1 [~ B R T I 1
T I I en 1 I o1 1
[| [[1
1 [[1 1
+ —+ + —+ + —+ I

I I
+ —+ + —+ + —+ I
1 [[[1
1 [[1
[t I T A« T T~ B B 1
[B A R - B |
1 [R R Y B 1
Tl I I en 1 I o1 1
[~] [[|
1 [[[1
+ —+ + —+ + —+ 1 I

1 1
+ —+ + —+ + —+ I
1 [[[1
1 [[R 1
_5__B__k__m_
[I T A R - I | 1
1 [T O B Y~ S T B S
I~ 1t e N
[[[1
1 [[[1
+ —+ + —+ + —+ 1 1

1 1
+ —+ + —+ + —+ 1 1
1 [[[1
1 [[R 1
I I A I T ™ S B 1
[T R T B T B | 1
1 [B R T I | 1
T 1 1T N 1
[] [[1
1 [[[1
+ —+ + —+ + —+ 1 1

1 1
+ —+ 4+ —+ + —+ 1 I
1 [[[1
1 [Lrmgor 1
[TR T A« I R ™ S B 1
[N T A A N T R 1
1 T N I A B | 1
Tw T e N 1
[| [[1
1 [[[1
+|++|++|+“ “
+ —+ 4+ —+ + —+ 1 1
1 [[[1
1 [[I 1
[I T A« T ™ R B 1
[A A N A C I A 1
1 [S A A B | 1
[T A T O T I B 1
[] [[1
1 [[[1
+—++—++—+ +—+

37

Node-Level Performance Engineering

(c) RRZE 2018

Enforcing thread/process-core affinity
under the Linux OS

Standard tools and OS affinity facilities under
program control

likwid-pin

Example: STREAM benchmark on 16-core Sandy Bridge:
Anarchy vs. thread pinning

' I ' I ' ' I ' I ' I ' I ' I :T1|T2 T1|T2 T1|T2 T1|T2 T1|T2 T1|T2 T1|T2 T1|T2: :T1|T2 T1|T2 T1|T2 T1|T2 T1|T2 T1|T2 T1|T2 T1|T2:
80— - ! ! |
1 elp e [P|[PIlPllP [P [PIlPIP P [P|[PIPIP]
1 i[Lo [t |[o |[o |[o |[o |[o |[b |} +[LD |[b |[1D |[b |[ab |[Lab |[Lap |[LD |
70 E e jfle e e [eijfe [l [el[e|[e|[e][e|[e]|[e][]
1 L3 - L3 |

1 ! 1 Lt
60 - I ? | || Memory Interface H Memory Interface |:
[P ——— g i ey S ——————— [y ——— e S i S ———————

Bandwidth [GB/s)
w2 £ W
S S =3

I I I

|

——
-
PR
=
)
3
o
<
N
)
=
)
3
o
<
—

o= No pinning) |
| 80 - —
0 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i - !E_
4 8 12 16 20 24 28 32 70— = - —
threads L - - -=
60 = T T -
éso— - -
There are several reasons for caring seor = .
about affinity: Sy T . . . :
i Pinning (physical cores first,

Eliminating performance variation 0 = first socket first) -
Making use of architectural features o= i

Avoiding resource contention b v

4 8 12 16 20 24 28 32

(c) RRZE 2018 Node-Level Performance Engineering 39

More thread/Process-core affinity (“pinning”) options

Highly OS-dependent system calls
But available on all systems

Linux: sched setaffinity ()
Windows: SetThreadAffinityMask ()

Hwloc project (http://www.open-mpi.de/projects/hwloc/)
Support for “semi-automatic” pinning in some
compilers/environments

All modern compilers with OpenMP support

Generic Linux: taskset, numactl, 1likwid-pin (See below)

OpenMP 4.0 (see OpenMP tutorial)

Affinity awareness in MPI libraries
SGI MPT
OpenMPI
Intel MPI

(c) RRZE 2018 Node-Level Performance Engineering

41

Likwid-pin L f—
Overview rr —

Pins processes and threads to specific cores without touching code
Directly supports pthreads, gcc OpenMP, Intel OpenMP

Based on combination of wrapper tool together with overloaded pthread library -
binary must be dynamically linked!

Can also be used as a superior replacement for taskset
Supports logical core numbering within a node

Simple usage with physical (kernel) core IDs:
likwid-pin -c 0-3,4,6 ./myApp parameters
OMP NUM THREADS=4 likwid-pin -c 0-9 ./myApp parameters

Simple usage with logical core IDs (“thread groups”):
likwid-pin -c S0:0-7 ./myApp parameters
likwid-pin -c Cl:0-2 ./myApp parameters

(c) RRZE 2018 Node-Level Performance Engineering 42

LIKWID terminology
Thread group syntax

The OS numbers all processors (hardware threads) on a node
The numbering is enforced at boot time by the BIOS and may have nothing to

do with topological entities

LIKWID concept: thread group consisting of HW threads sharing a topological

entity (e.g., socket, shared cache,...)
A thread group is defined by a single character + index

Example: N numbering
likwid-pin -c S1:0-3,6,7 ./a.out across
. .. : physical
Group expression chaining with @: > cores first
likwid-pin -c S0:0-3@S1:0-3 ./a.out ;Vr'ggg the
z
Alternative expression based syntax:)
likwid-pin -c E:S0:4:2:4 ./a.out compact
E:<thread domain>:<num threads>:<chunk size>:<stride> > numEering
within the
: . . . group
Expression syntax is convenient for Xeon Phi:
likwid-pin -c E:N:120:2:4 ./a.out)

(c) RRZE 2018 Node-Level Performance Engineering

_____________________________________ +
oo + 4-——oo- e + -———o- +
o 4111 5112 6113 711
oo + 4-——oo- e + -———o- +
oo + 4-——oo- e + -———o- +
| 32kB| | 32kB| | 32kB| | 32kB| |
oo + 4-——oo- e + -———o- +
o—mmm- + - + mmmoo- + - +
| 256kB| | 256kB| | 256kB| | 256kB| |
o—mmm- + - + mmmoo- + - +
e e +
I 8MB Il
e e +
_____________________________________ +
_____________________________________ +
oo e + -———o- S +
o 1112 31145116 711
oo e + -———o- e +
oo e + -———o- S +
| 32kB| | 32kB| | 32kB| | 32kB| |
oo e + -———o- S +
oo + oo + - e +
| 256kB| | 256kB| | 256kB| | 256kB| |
oo + oo + - e +
o +
| 8MB I
o +
_____________________________________ +
43

Likwid
Currently available thread domains

Possible unit prefixes

Default if —c is not

N node specified!
S socket
M NUMA domain

[Memory]

(c) RRZE 2018 Node-Level Performance Engineering 44

Likwid-pin —r—
Example: Intel OpenMP rr —
Running the STREAM benchmark with likwid-pin:

$ likwid-pin -c S0:0-3 ./stream

Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word
Array size = 20000000

Offset = 32

Main PID always

The total memory requirement is 457 MB pinned
You are running each test 10 times
The *best* time for each test is u Skip shepherd

EXCLUDING the first and last i
[pthread wrapper] MAIN -> 0
[pthread wrapper] PIN MASK: 0->1 1->2 2->3
[pthread wrapper] SKIP MASK: 0x1
threadid 140668624234240 -> SKIP
threadid 140668598843264 -> core 1 - OK
threadid 140668594644992 -> core 2 - OK \\\\\\
threadid 140668590446720 -> core 3 - OK

thread if necessary

Pin all spawned
threads in turn

[... rest of STREAM output omitted ...]

(c) RRZE 2018 Node-Level Performance Engineering 45

Clock speed under the Linux OS

likwid-powermeter
likwid-setFrequencies

Which clock speed steps are there?
likwid-powermeter

Uses Intel RAPL (Running average power limit) interface (Sandy Bridge++)
$ likwid-powermeter -i

CPU name: Intel (R) Xeon(R) CPU E5-2695 v3 d Note: AVX code on

CPU type: Intel Xeon Haswell EN/EP/EX processo HSW+ may execute
even slower than

CPU clock: 2.30 GHz base freq.

Base clock: 2300.00 MHz

Minimal clock: 1200.00 MHz Info for RAPL domain PKG:

Turbo Boost Steps: Thermal Spec Power: 120 Watt

CcO 3300.00 MHz Minimum Power: 70 Watt

Maximum Time Window: 46848 micro sec
C2 3100.00 MHz

C3 3000.00 MHz Info for RAPL domain DRAM:

C4 2900.00 MH=z Thermal Spec Power: 21.5 Watt
[...] Minimum Power: 5.75 Watt

C13 2800.00 MHz Maximum Power: 21.5 Watt

Maximum Time Window: 44896 micro sec

Likwid-powermeter can also measure energy consumption,
but likwid-perfctr can do it better (see later)

(c) RRZE 2018 Node-Level Performance Engineering 47

Setting the clock frequency

The “Turbo Mode” feature makes reliable benchmarking harder
CPU can change clock speed at its own discretion

Clock speed reduction may save a lot of energy

So how do we set the clock speed? - LIKWID to the rescue!

$ likwid-setFrequencies -1

Available frequencies:
1.21.31.41.51.61.71.81.922.12.22.3 2.301

$ likwid-setFrequencies -p

Current CPU frequencies:

CPU 0: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo
CPU 1: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo
CPU 2: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo
CPU 3: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo

B R RR

[...]

$ likwid-setFrequencies -f 2.0 //
$
Turbo mode

(c) RRZE 2018 Node-Level Performance Engineering 48

Uncore clock frequency

Starting with Intel Haswell, the Uncore (L3, memory controller,

UPI) sits in its own clock domain

$ likwid-setFrequencies -p

[...]
CPU 68: governor

CPU 69: governor
CPU 70: governor
CPU 71: governor

performance
performance
performance
performance

Current Uncore frequencies:
Socket 0: min/max 1.2/3.0 GHz
Socket 1: min/max 1.2/3.0 GHz

min/cur/max
min/cur/max
min/cur/max
min/cur/max

$ likwid-setFrequencies --umin 2.3 --umax

2.3/2.301/2.301 GHz Turbo
2.3/2.301/2.301 GHz Turbo
2.3/2.301/2.301 GHz Turbo
2.3/2.301/2.301 GHz Turbo

Y

2.3

Uncore has considerable impact on power consumption

J. Hofmann et al.: An analysis of core- and chip-level architectural features in four generations of
Intel server processors. Proc. ISC High Performance 2017. DOI: 10.1007/978-3-319-58667-0_16.

J. Hofmann et al.: On the accuracy and usefulness of analytic energy models for contemporary
multicore processors. Proc. ISC High Performance 2018. DOI: 10.1007/978-3-319-92040-5_2

(c) RRZE 2018

Node-Level Performance Engineering 49

http://dx.doi.org/10.1007/978-3-319-58667-0_16
https://dx.doi.org/10.1007/978-3-319-92040-5_2

Intel KMP_AFFINITY environment variable

KMP AFFINITY=[<modifier>,..]<type>[,<permute>][,<offset>]

modifier B type (required)
granularity=<specifier>istotakes compact
the following specifiers: fine, :
disabled
thread, and core .
explicit (GOMP CPU AFFINITY)
norespect - =
none
noverbose
scatter

proclist={<proc-list>} —

respec OS processor IDs
verbos:a\

Respect an OS
affinity mask in place

Default:
noverbose,respect,granularity=core

KMP AFFINITY=verbose,none to list machine topology map

(c) RRZE 2018 Node-Level Performance Engineering 50

Intel KMP_AFFINITY examples

KMP_AFFINITY=granularity=fine,compact

C I ntel Machine/Node
© / Package means
T e chip/socket
Core 0 Core 1 Core 0 Core 1
6@ Thread context
0 1 2 3 4 5 6 7

OpenMP* global thread IDs

KMP_AFFINITY=granularity=fine,scatter

Machine/Node

(c) Intel

Package 0 Package 3

Core 0 Core 1 Core 0 Core 1

GO 0 60 50—

OpenMP* global thread IDs

(c) RRZE 2018 Node-Level Performance Engineering 51

Intel KMP_AFFINITY permute example

KMP AFFINITY=granularity=fine,compact,1,0

Machine/Node

(c) Intel
Package 0 Package 3
Core 0 Core 1 Core 0 Core 1

G0 90 60 9O~

OpenMP* global thread IDs

KMP AFFINITY=granularity=core,compact

Machine/Node

(c) Intel ///////////«\\\\\\\\\\\

Package 0 Package 3

Core 0 Core 1 Core 0 Core 1

TR Y 6@ @/W Threads may float

o) % . within core

OpenMP* global thread ID sets

(c) RRZE 2018 Node-Level Performance Engineering 52

GNU GOMP_AFFINITY

GOMP_AFFINITY=3,0-2 used with 6 threads

(c) Intel

Machine/Node

/\

Package O

P

Core 0 Core 1 Core 0 Core 1
05 proc ID 0 0S proc ID 2 0S proc ID 1 0S proc ID 3
1.5t i3 {2} {0.4) _

Package 3

T

COpenP* global thread ID sets

Always operates with OS processor IDs

(c) RRZE 2018

Node-Level Performance Engineering

Round robin
oversubscription

53

Microbenchmarking for
architectural exploration (and more)

Probing of the memory hierarchy
Saturation effects in cache and memory

Latency and bandwidth in modern computer environments | I I L

_75/‘ HPC plays here

ns 2 —T1—
20 ——
200 ——
US 2000 ——
cycles
@2.3 GHz
ms

(c) RRZE 2018

10—9 —] 3 — 10 14
\ i
— High bandwidth mem.
' - | T 64
7 11/ —— 10
107 —/ | = QOuter cache }7 —— 32
- \ / —— 16
106 —— ‘ Main memory ‘ - 1 3
%, S 101 14
- e ‘ HPC networks }7
105 ——- |
T \'ﬂﬁ bytes/cy
o\ _{ ‘ @2.3 GHz
. 10Gbit Ethernet L
o P A g
B\ c—— 10° 1GBIs
\
'~ Solid state disk
108 —— \
IIII
}—\ ;{ Gigabit Ethernet }—\
102 —— \ C—— 108
A
\ [Local hard disk -/
107 —— (
1 1 107
Latency Bandwidth
[sec] [bytes/sec]

Node-Level Performance Engineering

Avoiding slow data
paths is the key to
most performance
optimizations!

But how “slow” are
these data paths
anyway?

55

Intel Xeon E5 multicore processors

Microarchitecture SandyBridge-EP IvyBridge-EP Haswell-EP

Shorthand SNB IVB HSW
Xeon Model E5-2680 E5-2690 v2 E5-2695 v3
Year 03/2012 09/2013 09/2014
Clock speed (fixed) 2.7 GHz 2.2 GHz 2 3GHz | - |
Cores/Threads 8/16 10/20 14/28
Load/Store throughput per cycle

AVX(2) 1LD & 1/2ST 1LD & 1/2S8T 2LD & 1ST

SSE/scalar 2ID||[1LD & 1ST 2LD|[1LD&1ST 2LD&1ST
L1 port width 2x16+1x16B 2x16+1x16B 2x32+1x32B
ADD throughput 1/cy 1/cy 1/¢cy))
MUL throughput 1/cy 1/cy 2/¢cy FP instructions
FMA throughput n/a n/a 2/cy throughPUt per core
L.2-1.1 data bus 32B 32B 64 B } Max. data transfer per
L.3-1L.2 data bus 32B 32B 32B Cycle between caches
LLC size 20 MiB 25 MiB 35MiB
Main memory 4xDDR3-1600 4xDDR3-1866 4xDDR4-2133 } Peak main memory
Peak memory BW 51.2GB/s 51.2GB/s 68.3GB/s bandwidth
Load-only BW 43.6 GB/s (85%) 46.1GB/s(90%) 60.6 GB/s (89%)
11 3Mem per CL 3.96cy 3.05¢cy 243 ¢y

(c) RRZE 2018 Node-Level Performance Engineering

56

The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

double precision, dimension(N) :: A,B,C,D
A=1.d0; B=A; C=A; D=A

do j=1,NITER Prevents smarty-pants
do i=1,N compilers from doing
A(i) = B(i) + C(i) * D(i) “clever” stuff
enddo

if (.something.that.is.never.true.) then
call dummy (A,B,C,D)
endif
enddo

Mflops = (2.d0*NITER)*N / (etime-stime) / 1.0e6

Report performance for different N, choose NITER so that accurate time

measurement is possible
This kernel is limited by data transfer performance for all memory levels on all

architectures, ever!

(c) RRZE 2018 Node-Level Performance Engineering 57

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

900{]|| [[IIIIII| [T I T TTTTI [[T TTTI [[T TTTI
30(}0_ = — AVX | Arethe
h ‘ PR S — — gealar | :oerf?rmance
evels
. 7000 > 128 GBIs | plausible?
ﬁ - -
& 6000 — — What about
0 - L1D cache (32k) |‘ 4 multiple cores?
= 50001 ! —
O u 1 Do the
o .
= | L2 cache (256k] bandwidths
- 4000 | (') scale?
b — | | -
& 30005— o=y, L3 cache (20M) —
L ol 1 | 4
oy |
P Memory
T N
Pattern! - 5W/it.
Ineffective 11 |||||| | L1 |||||| | L1 |||||| 918GB/S
instructions 1(}4 105 l(}ﬁ (incl. write
allocate)

Loop length

(c) RRZE 2018 Node-Level Performance Engineering 58

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz):

Observations and further questions

9000
8000

7000

s 2
s 8

S
g

3000

Performance [MFlops/s]

2000

1000

| Theoretical limit?

[
ﬂ

2.66x SIMD imp

| Theoretical limit?
_/- I —I‘F ‘- — N
N/ ~
— -

— AVX
scalar

Theoretical limits?

Il.._-

3

10° 10

(c) RRZE 2018

10° 10°
Loop length

Node-Level Performance Engineering

10

See later for
answersl!

59

The throughput-parallel vector triad benchmark

Every core runs its own, independent triad benchmark
—> pure hardware probing, no impact from OpenMP overhead

double precision, dimension(:), allocatable :: A,B,C,D
!SOMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N) ,B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

|SOMP SINGLE

1$SOMP END SINGLE
do j=1,NITER

do i=1,N
A(i) = B(1i) + C(i) * D(1)
enddo
<<obscure dummy call>>
enddo

1SOMP SINGLE

ISOMP END SINGLE
ISOMP END PARALLEL
Mflops = (2.d0O*NITER)*N*num threads / (etime-stime) / 1.0e6

(c) RRZE 2018 Node-Level Performance Engineering 60

Throughput vector triad on Sandy Bridge socket (3 GHz) rr?:

__
TU I| T [T TTTI T T I T TTTT [[I T T TTT T [L
L i :i#a _: o
60 2.0 | ii‘de” |
| ' I
— 1.6 :ﬁ ¢ §!
Z' 50 e S8
& 1.2 =] = -
n 1 e |E] 2
o 40 0.8 _ s =
? i Saturation effect _ :;
g in memory] :#9” !
3 30 1] | |
g | | | | | 'L_'-____'_':'___T_: N
= 10°
a 20 —
l[]'_ /
o
- / \ 3\
0 I| | | | IIIII| | | | M| | | | IIIII|L_ | | |
2 3 4 5 6
10 (0 10 10 10

Scalable BW in Loop length
L1, L2, L3 cache

(c) RRZE 2018 Node-Level Performance Engineering 61

Attainable memory bandwidth: Comparing architectures

— —
i_

Intel Broadwell (22 cores)

140

120

in NUMA
domain

Z

Single core «

1 does not~_|
| saturate BVV\\

BW saturation}

| Cop enableld | | |
OO 5 10 15 20
Threads

Intel Xeon Phi 7210/ K

Pattern!
Bandwidth
saturation

AMD Naples (24 cores)

12
Threads

NVIDIA P100 (Pascal)

(c) RRZE 2018

‘ | ‘
10000

| s
20000

Node-Level Performance Engineering

| s
30000

Threads

| s
40000

| s
50000

6000

Conclusions from the microbenchmarks

Affinity matters!
Almost all performance properties depend on the position of
Data
Threads/processes
Conseqguences
Know where your threads are running
Know where your data is

Bandwidth bottlenecks are ubiquitous

(c) RRZE 2018 Node-Level Performance Engineering

64

»
3 M
: T T
X //‘ 1y 1 ey

- LU e

N E i 8 £

1 1 2
Opar st rnasiy Flogn Brte

“Simple” performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer
Example: array summation

Example: dense & sparse matrix-vector multiplication

Example: a 3D Jacobi solver

Model-guided optimization

R.W. Hockney and I.J. Curington: f,,: A parameter to characterize memory and communication bottlenecks.
Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schonauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers.
Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers.

UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Prelude: Modeling customer dispatch in a bank

Revolving door
throughput:
bs [customers/sec]

Processing
capability:
P peax [tasks/sec]

Intensity:
| [tasks/customer]

(c) RRZE 2018 Node-Level Performance Engineering 66

Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? P [tasks/sec]

The bottleneck is either
The service desks (max. tasks/sec): Ppeak

The revolving door (max. customers/sec): I bg

P = min(Ppeax, ! - bs)

This is the “(naive) Roofline Model”
High intensity: P limited by “execution”
Low intensity: P limited by “bottleneck”
"Knee” at P,oqx =1 - bs:
Best use of resources

Roofline is an “optimistic” model:
(“light speed”)

Performanc
LY

rd
Intensity

c) RRZE 2018 Node-Level Performance Engineering 67
g

The Roofline Model — Basics [m'—

Apply this to performance of compute devices

Maximum processing capability - Peak performance: Ppear [g]
. . B
Rate of revolving door - Memory bandwidth: b [;]
. . F
Workload per customer - Computational Intensity: I [E]
8 = i
Machine model: P
4_._ : Peak.
GF _
Ppeak =4 — é N double r, s, a[N];
S 2 i} for (i=0; i<N; ++i) {
;. T TN Y al[il = r + s * a[il;}
GB = Ir '
bs =107 | 1
= 05 | -
I _ 2F _ F
ol | | I=-—=0125F/p
| | I I4 I I I I
Application model: / 64 132 116 18 U4 12 1 2

Computational intensity / [F/B]

(c) RRZE 2018 Node-Level Performance Engineering 68

The Roofline Model — Basics rrEE

Compare capabilities of different machines

_I| III Iillllll I|

_ memory-hound I
" on all architectures g

Assuming double

T~ precision —

for single precision:
Ppeak =) % Ppeak

___3D7ptstencil

pea

S
S
|
sta)ai) & IMVM__

5=

100}

L [== NVIDIA P100
Intel Knights Landing

| |=— 2x Intel Haswell |compute-bound

lon all architectures
|
10 - . [3

- 1 | -
B | | | : |] Il]] 1 1 |]] ‘ |

0.1 1 10
Computational Intensity 7 [F/B]

Peak Performance P [GF/s]

RLM always provides upper bound — but is it realistic?

If code is not able to reach this limit (e.g. contains add operations only)
machine parameter need to redefined (e.9., Ppeax 2 Ppear/2)

(c) RRZE 2018 Node-Level Performance Engineering 69

The Roofline Model —_——
(a slightly refined version for better in-core prediction)

P..ox = Applicable peak performance of a loop, assuming that data
comes from the level 1 cache (this is not necessarily P.)

- eg., P, =176 GFlop/s

| = Computational intensity (“work” per byte transferred) over the
slowest data path utilized (code balance B. =1 1)
- e.g., 1 =0.167 Flop/Byte -> B = 6 Byte/Flop

bs = Applicable peak bandwidth of the slowest data path utilized
- e.g., bg = 56 GByte/s

[Byte/s]
Expected performance: /

bs

P = min(Pyax, I * bg) = min | P,

ax’ B_C [Byte/Flop]

(c) RRZE 2018 Node-Level Performance Engineering 70

Estimating per-core P, 0n agiven architecture _

Haswell port scheduler model.

Instruction reorder
buffer

//\\

ALU ALU

LOAD LOAD STORE ALU ALU AGU

BZbT SZbT 32bl' JUMP

Retire 4 pops Haswell

(c) RRZE 2018

Node-Level Performance Engineering 71

Example: Estimate P, ., of vector triad on Haswell

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {
A[i] = B[1] + C[1i] * D[1i]~;

Minimum number of cycles to process one AVX-vectorized iteration
(one core)?

- Equivalent to 4 scalar iterations

Cycle 1: LOAD + LOAD + STORE
Cycle 2. LOAD + LOAD + FMA + FMA
Cycle 3: LOAD + LOAD + STORE Answer: 1.5 cycles

(c) RRZE 2018 Node-Level Performance Engineering 72

Example: Estimate P, of vector triad on Haswell (2.3 GHz)

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {
A[i] = B[1] + C[1i] * D[1i]~;

What is the performance in GFlops/s per core and the bandwidth in
GBytes/s?

One AVX iteration (1.5 cycles) does 4 x 2 = 8 flops:
2.3-10°% cy/s 2 flops Gflops § o]
v/ - 4 updates - P =12.27 P g o0]

1.5cy update S :
updates bytes Gbyte 2000 _
6.13 - 10° P - 32 y = 196 Y ’ | ‘ |]
S update S Y

(c) RRZE 2018 Node-Level Performance Engineering 73

P.ox T bandwidth limitations: The vector triad rrEE

Vectortriad A(:)=B(:)+C(:)*D(:) on a 2.3 GHz 14-core Haswell chip

Consider full chip (14 cores):

Memory bandwidth: bg = 50 GB/s

Code balance (incl. write allocate):
B. = (4+1) Words / 2 Flops =20 B/F > 1 = 0.05 F/B

=2 1-bs =2.5 GF/s (0.5% of peak performance)

P o | COTe = 36.8 Gflop/s ((8+8) Flops/cy x 2.3 GHz)
P..x / core = 12.27 Gflop/s (see prev. slide)

2> P = 14 *12.27 Gflop/s =172 Gflop/s (33% peak)

P = min(Py.x, I - bg) = min(172,2.5) GFlop/s = 2.5 GFlop/s

(c) RRZE 2018 Node-Level Performance Engineering 74

Performance [GFlop/s]

A not so simple Roofline example rrEE

Example: do i=1,N; s=s+a(i); enddo
in single precision on a 2.2 GHz Sandy Bridge socket @ “large” N

P — min P I . b Machine peak
(max. S) (ADD+MULT)
T T T T T I T I I Out of reach for this
282 GF/s code

128} Rt
141 GF/s \ ADD peak i

“r P] (best possible
32 - code)
_______ L76CFs,
to 15— How do we
SI— --------- 5.9 GF/s— no SIMD > get these?

\ - See next!

3-cycle latency
per ADD if not

n ipelined
1 1 1 m | 1 PIp _J
lf32\f16 /8 /4 12 1 2 4 V 16

Operational Intensity [Flops/Byte]
| =1 flop / 4 byte (SP!)

N B

]

P (worst loop code)

(c) RRZE 2018 Node-Level Performance Engineering 75

Applicable peak for the summation loop

Plain scalar code, no SIMD
Pattern!
Pipelining
Issues

ILOAD r1.0 € O

i €1 ADD pipes utilization:
loop: - D
LOAD r2.0 € a(i) -
ADD rl1l.0 € rl1.0+r2.0
. <
++i 2? loop %
result € rl.0 S c_%
: %
5 n
%
%

- 1/24 of ADD peak

(c) RRZE 2018 Node-Level Performance Engineering 76

Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD rl.0 € O
LOAD r2.0 € 0

e s L
i €1

loop:
LOAD r4.0 € a(i)
LOAD r5.0 € a(i+l)
LOAD r6.0 € a(i+2)

ADD pipes utilization:

ADD r1.0 € r1.0 + r4.0
ADD r2.0 € r2.0 + r5.0
ADD r3.0 € r3.0 + r6.0

- —> 1/8 of ADD peak
i+=3 =2°? loop P

result € rl.0+4r2.0+r3.0

(c) RRZE 2018 Node-Level Performance Engineering 77

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled Pattern! ALU
LOAD [rl.0,..,rl.7] € [O,..,0] saturation
LOAD [r2.0,..,r2.7] € [O0,..,0]
LOAD [r3.0,..,r3.7] € [O0,..,0]
i €1

ADD pipes utilization:

loop:
LOAD [r4.0,..,r4.7] € [a(i),..,a(i+7)]
LOAD [r5.0,..,r5.7] € [a(i+8),..,a(i+15)]
LOAD [r6.0,..,r6.7] € [a(i+l6),..,a(i+23)]

ADD rl € rl + r4
ADD r2 € r2 + r5
ADD r3 € r3 + ré6

i+=24 -7? loop - ADD peak
result € rl1l.0+rl.1+4+...+4r3.6+4+r3.7

(c) RRZE 2018 Node-Level Performance Engineering 78

Input to the roofline model rr_|:

... on the example of do i=1,N; s=s+a(i); enddo
In single precision

Throughput: 1 ADD + 1 LD/cy architecture

Pipeline depth: 3 cy (ADD)
8-way SIMD, 8 cores

/ 59...141GFls —

Worst code: P = 5.9 GF/s (core bound)
Better code: P = 10 GF/s (memory bound)

Code analysis:

1 ADD + 1 LOAD

10 GF/s ~—
measurement
analysis

Maximum memory

bandwidth 40 GB/s

(c) RRZE 2018 Node-Level Performance Engineering 79

Prerequisites for the Roofline Model

The roofline formalism is based on some (crucial) assumptions:
There is a clear concept of “work™ vs. “traffic”
“‘work” = flops, updates, iterations...
“traffic” = required data to do “work”

Attainable bandwidth of code = input parameter! Determine effective
bandwidth via simple streaming benchmarks to model more complex
kernels and applications

Data transfer and core execution overlap perfectly!
Either the limit is core execution or it is data transfer

Slowest limiting factor “wins”; all others are assumed
to have no impact

Latency effects are ignored: perfect data streaming,
“steady-state” execution, no start-up effects

(c) RRZE 2018 Node-Level Performance Engineering 80

Multicore performance tools:
Probing performance behavior

likwid-perfctr

Probing performance behavior FFEE

How do we find out about the performance properties and
requirements of a parallel code?

Profiling via advanced tools is often overkill

A coarse overview iIs often sufficient

likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AlX, “lipfpm” on
Linux/Altix)

Simple end-to-end measurement of hardware performance metrics
“Marker” API for starting/stopping

[BRANCH: Branch prediction miss rate/ratio

counters CACHE: Data cache miss rate/ratio
Multiple measurement region CLOCK: Clock of cores
Support DATA: Load to store rét::LO
_ _ FLOPS DP: Double Precision MFlops/s
Preconfigured and extensible FLOPS SP: Single Precision MFlops/s
metric groups, list with FLOPS_X87: X87 MFlops/s)
. . 2: L2 cache bandwidth in MBytes/s
likwid-perfctr -a ~< Le: Y
P L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s

\TLB: TLB miss rate/ratio

(c) RRZE 2018 Node-Level Performance Engineering 83

likwid-perfctr — —
Example usage with preconfigured metric group (shortened) r r —

$ likwid-perfctr -C N:0-3 -g FLOPS DP ./stream.exe

CPU name: Intel (R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz

CPU type: Intel Xeon IvyBridge EN/EP/EX processor

CPU clock: 2.20 GHz

[... YOUR PROGRAM OUTPUT ...] Conflg_ured metrics
__ Always |______| (this group)

measuw
+ ___

et T o e ettt
| Event Core 0 | Core 1 | Core 2 | Core
e e e o o o $-m -
| INSTR RETIRED ANY | 521332883 | 523904122 | 519696583 | 519193
| CPU_CLK UNHALTED CORE | 1379625927 | 1381900036 | 1378355460 | 1376447
| CPU CLK UNHALTED REF | | 1389460886 | 1393031508 | 1387504228 | 1385276
|| FP_COMP OPS_EXE SSE FP PACKED DOUBLE || PMCO | 176216849 | 176176025 | 177432054 | 176367
| FP_COMP_OPS_EXE SSE FP SCALAR DOUBLE | PMC1 | 1554 | 599 | 72 | 27

| SIMD FP 256 PACKED DOUBLE | PMC2 | 0 | 0 | 0 | 0
T T T - domm e Fmm e dom e $-m -
e et dom e dom - o e +

| Metric | Core 0 | Core 1 | Core 2 | Core 3 |
e et dom e dom - o e +

| Runtime (RDTSC) [s] | 0.6856 | 0.6856 | 0.6856 | 0.6856 |)

| Runtime unhalted [s] | 0.6270 | 0.6281 | 0.6265 | 0.6256 | .

| Clock [MHz] | 2184.6742 | 2182.6664 | 2185.7404 | 2186.2243 | Derl\{ed

| CPI | 2.6463 | 2.6377 | 2.6522 | 2.6511 | metrics

| MFLOP/s | 514.0890 | 513.9685 | 517.6320 | 514.5273 |

| AVX MFLOP/s | 0 | 0 | 0 | 0 |

| Packed MUOPS/s | 257.0434 | 256.9838 | 258.8160 | 257.2636 |

| Scalar MUOPS/s | 0.0023 | 0.0009 | 0.0001 | 3.938426e-05 | _/
e dom - dom - - - dommm o +

(c) RRZE 2018 Node-Level Performance Engineering 84

likwid-perfctr rr?_
Marker API (C/C++ and Fortran)
A marker API is available to restrict measurements to code regions

The API only turns counters on/off. The configuration of the counters is still
done by likwid-perfctr

Multiple named region support, accumulation over multiple calls
Inclusive and overlapping regions allowed

#include <likwid.h>

LIKWID MARKER INIT; // must be called from serial region
#pragma omp parallel

{
LIKWID MARKER THREADINIT; // only reqd. if measuring multiple threads

}

LIKWID_MARKER START (“Compute”); « Activate macros with -DLIKWID PERFMON

LIKWID MARKER STOP (“Compute”) ; * Run likwid-perfctr with -m option to

activate markers

LIKWID MARKER START (“Postprocess”) ;
LIKWID MARKER STOP (“Postprocess”) ;

LIKWID MARKER CLOSE; // must be called from serial region

(c) RRZE 2018 Node-Level Performance Engineering 85

likwid-perfctr —r—
Best practices for runtime counter analysis r I_ —

Things to look at (in roughly this order) Caveats

Excess work Load imbalance may not show

in CPI or # of instructions
Spin loops in OpenMP
barriers/MPI blocking calls

In-socket memory BW saturation Looking at “top” or the Windows
Task Manager does not tell you
anything useful

Load balance (flops, instructions, BW)

Flop/s, loads and stores per flop metrics

SIMD vectorization In-socket performance
saturation may have various
CPI metric reasons

of instructions,

) : Cache miss metrics are
branches, mispredicted branches

sometimes misleading

(c) RRZE 2018 Node-Level Performance Engineering 86

Measuring energy consumption
with LIKWID

Measuring energy consumption
likwid-powermeter and likwid-perfctr -g ENERGY

Implements Intel RAPL interface (Sandy Bridge)
RAPL = “Running average power limit”

CPU name: Intel Core SandyBridge processor
CPU clock: 3.49 GHz
Base clock: 3500.00 MHz

Minimal clock: 1600.00 MHz
Turbo Boost Steps:

Cl 3900.00 MHz

C2 3800.00 MHz

C3 3700.00 MHz

C4 3600.00 MHz

Thermal Spec Power: 95 Watts
Minimum Power: 20 Watts
Maximum Power: 95 Watts

Maximum Time Window: 0.15625 micro sec

(c) RRZE 2018 Node-Level Performance Engineering 88

Example:
A medical image reconstruction code on Sandy Bridge

/s
p -_"_.
; -
s -
e
- .". B3 =
s -

8 x
=

- ____\\ .
=

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

Test case Runtime [s] Power [W] Energy [J]
8 cores, plain C 90.43 90 V| 8110
® »n
8 cores, SSE 29.63 93 o 8 2750
S (@)
8 cores (SMT), SSE 22.61 102 ot 2300
N < 4
8 cores (SMT), AVX 18.42 11 N\ /2040
\/

(c) RRZE 2018 Node-Level Performance Engineering 89

Typical code optimizations in the Roofline Model

Hit the BW bottleneck by good

serial code
(e.g., Perl = Fortran)

Increase intensity to make

better use of BW bottleneck T
(e.g., loop blocking = see later) - Y =
Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

Hit the core bottleneck by good

serial code
(e.g., -fno-alias -2 see later) 0.5

I
Shift P, by accessing ;
additional hardware features or o
using a different 164 1/32 116 18 14 12 1 2

algorith m/implementation Computational intensity / [F/B]
(e.g., scalar - SIMD)

16 L

e
|
)
e
th
|

o
|

Performance P | GF/s]

[

0.25

(c) RRZE 2018 Node-Level Performance Engineering 90

Using Roofline for monitoring “live” jobs on a cluster
Based on measured BW and Flop/s data via likwid-perfctr

Ganglia Data / Roofline (04. Feb. 2016 - 14:12:24)

Click and drag to zoom in. Hold down shift key to x-pan.
10k

Resetzoom
L2 .
100
- 1
o
3
E 0.01
% .
: « B o Where are the “good”
50001 - and the “bad” jobs in

this diagram?

0.000001
0.001 0.01 0.1 1 10

intensity (flops/byte)

DP < SP DP+SP roofline DP == roofline SP

(c) RRZE 2018 Node-Level Performance Engineering 91

Case study: A Jacobi smoother

The basic performance properties in 2D
Layer conditions
Optimization by spatial blocking

Stencil schemes

Stencil schemes frequently occur in PDE solvers on regular lattice
structures

Basically it is a sparse matrix vector multiply (spMVM) embedded
In an iterative scheme (outer loop)

but the regular access structure allows for matrix free coding

do iter = 1, max jiterations

Perform sweep over regular grid: y(:) € x(:)

Swap y €2 x

enddo

Complexity of implementation and performance depends on
update scheme, e.g. Jacobi-type, Gauss-Seidel-type, ...
spatial extent, e.g. 7-pt or 25-pt in 3D,...

(c) RRZE 2018 Node-Level Performance Engineering 93

Jacobi-type 5-pt stencil in 2D rrEE

Lattice

/ Update
(LUP)

(x(J-1,k) + x(3+1,k) &
x(j,k-1) + x(3j,k+1))

do k=1, kmax
Q) do Jj=1,jmax
$ v(j,k) = const *
2 +
/)] enddo

enddo
k

y (0:Jmax+1,0:kmax+1)

J

x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice Updates per second” [LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)

(c) RRZE 2018

Node-Level Performance Engineering 94

Jacobi 5-pt stencil in 2D: data transfer analysis | k-

: Available in cache
LD(TnS:; gvﬁi:iék) r—‘ (used 2 updates before) \
allocate) :
/ LD x(j+1,k)

do k=1, kmax
0y Yo j=1, jmax
':l:::l:l y(j,k) = const * (x(j-1,k) + x(j+1,k) &
= + x(3,k-1) + x(j, k+1))
n enddo

enddo

Naive balance (incl. write allocate): \‘ LD x(j,k-1) \ LD x(j,k+1)

x(:,) :3LD+
y(:,) :1ST+1LD

= B.=5Words /LUP =40 B /LUP (assuming double precision)

(c) RRZE 2018 Node-Level Performance Engineering 95

Jacobi 5-pt stencil in 2D: Single core performance

Code balance (B[**™)
measured with likwid-perfctr

~24 B/ LUP

~40 B/ LUP

L3 Cache

MILUP/s

300
200

100f— jmax=kmax

>

<€

>

Jmax*kmax = const -

0] IIIIIII|

> |

10° 10

(c) RRZE 2018

4

5 6

10 10

jmax

10

Node-Level Performance Engineering

Questions:

1. How to achieve
24 B/LUP also
for large jmax?

. How to sustain
>600 MLUP/s for
jmax > 104 ?

Intel Compiler
7 ifort V13.1

Intel Xeon E5-2690 v2
(“lvyBridge’@3 GHz)

96

Case study: A Jacobi smoother

The basics in two dimensions
Layer conditions
Optimization by spatial blocking

Analyzing the data flow

Worst case: Cache not large enough to hold 3 layers (rows) of grid
(assume “Least Recently Used” replacement strategy) /‘ -

//
hit /
hit
k
3j x(0:jmax+1,0:kmax+1)

(c) RRZE 2018 Node-Level Performance Engineering 98

Analyzing the data flow rr?:

Worst case: Cache not large enough to hold 3 layers (rows) of grid
(+assume ,Least Recently Used” replacement strategy)

hit

hit

3j x(0:jmax+1,0:kmax+1)

(c) RRZE 2018 Node-Level Performance Engineering 99

Analyzing the data flow rr?:

_ I
Reduce inner (j-)
loop dimension
successively hit
x(0:jmax1+1,0:kmax+1)
hit
Best case: 3

“layers” of grid fit
into the cachel!

k hit hit
hit

j x(0:jmax2+1,0:kmax+1)

(c) RRZE 2018 Node-Level Performance Engineering 100

Analyzing the data flow: Layer condition rrE:

2D 5-pt Jacobi-type stencil

do k=1, kmax

do j=1,jmax
vy(j,k) = const * (x(j-1,k) + x(j+1,k) &
+ x(3j,k-1) +)
enddo
enddo 3 * jmax * 8B < CacheSize/2
/ “Layer\condition”
3 rows of %/,//// \\%
Jmax double Safety margin
precision (Rule of thumb)

Layer condition:
« Does not depend on outer loop length (kmax)

» No strict guideline (cache associativity — data traffic for y not included)
* Needs to be adapted for other stencils (e.g., 3D 7-pt stencil)

(c) RRZE 2018 Node-Level Performance Engineering 101

Analyzing the data flow: Layer condition (2D 5-pt Jacobi) | [I e

///4 y: (LLD +1ST)/LUP f//J x: 1LD/LUP

do k=1, kmax
do j=1, jmax
= const * (x(j-1,k) + x(j+1,K) &

vy(J/k
—— + x(j,k-1) +)
YES enddo
enddo Bc=24B/LUP

3 * gJmax * 8B < CacheSize/2

Layer condition fulfilled?
K/J y: (1LD +1ST)/LUP

do k=1, kmax
NO do j=1, jmax
j,k) = const * (x(j-1,k) + &
. N y(J,k) . (x(] : ;
enddo x: 3LD/LUP F/////
enddo B.=40B/LUP

(c) RRZE 2018 Node-Level Performance Engineering 102

Fulfilling the layer condition [T ='—

Establish layer condition for all domain sizes?

ldea: Spatial blocking
Reuse elements of x () as long as they stay in cache

Sweep can be executed in any order, e.g. compute blocks in j-direction

“Spatial Blocking” of j-loop:
do jb=1, jmax, jblock ! Assume jmax is multiple of jblock
do k=1, kmax
do j= jb, (jb+jblock-1) ! Length of inner loop: jblock
v(j,k) = const * (x(J-1,k) + x(J+1,k) &
+ x(3,k-1) +)
enddo

enddo — _
enddo New layer condition (blocking)

3 * jblock * 8B < CacheSize/2

= Determine for given CacheSize an appropriate jblock value:

jblock < CacheSize / 48 B

(c) RRZE 2018 Node-Level Performance Engineering 103

Establish the layer condition by blocking rr?:

Split up
domain into
subblocks:

e.g. block
size=5

(c) RRZE 2018 Node-Level Performahce Engineering 104

Establish the layer condition by blocking rr?:

— Additional data
<— transfers (overhead) 1
— at block boundaries!

(c) RRZE 2018 Node-Level Performahce Engineering 105

Establish layer condition by spatial blocking rrEE

jblock < CacheSize / 48 B Which cache to block for?
900 IIII| | | IIIIIIIl | | IIIIII| | IIIIIII| | | IIIII4
200 B | L2: CS=256 KB |
L | jblock=min (jmax,5333) | < L3: CS=25 MB
7001 l | jblock=min (jmax, 533333)
: :
[|
600 |- | |
| | |
£ 5002 | | —
S 18 : :
S 400 | | =
- | |— CS=inf. | .
300 (- | |— CS=25MB | i
B 1 |— CS=0.24 MB | i .
| | Intel Compiler
2001 | | -1 ifort V13.1
r | | 1 Intel Xeon E5-2690 v2
100 —(jmax=kmax: Jmax*kmax = lconst R — (“IvyBridge’@3 GHz)
O_""l | | IIIIIIIl | | IIIIII| | IIIIIII| | | IIIIII_ L1:32KB
3 4 5 6 7 .
10 10 10 10 100 L2: 256 KB
jmax L3: 25 MB

(c) RRZE 2018 Node-Level Performance Engineering 106

Layer condition & spatial blocking: Memory code balance rr?:

_ |
900 TTTTT T \:l T \I:\\II‘
800/ | | ! Main memory access is not
700} i i | reason for different performance
60| W (but L3 access is!)
éSOO; i J:/-_—_v;
S 400|- | _ —L~———_ Blocking factor
300 e | 1 (CS=25 MB) still a
| [CS=024MB | little too large
200 | I
: : 447\IIII I III\IIIl I [IIII\I| I Q{\Illll I T T
100 ! ! of ! |
- : l 4 | - | E—
Lol Lol Lol Lol
0 10° 10* 10° 10° 36_— 40 B / LUP i
Jmax 2k |
| |
281
- 24 B/ LUP

0
16 — (CS=25MB
— (S=0.24 MB

Main memory: Byte/LUP
2

|
I
I
— (CS=inf, :
I
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
Intel Compiler i
|
|
|
|
|
|

o
T | T | T | T | T | T

ifort V13.1 8 Measured main memory -
Intel Xeon E5-2690 v2 4 code balance (BC) |
(“lvyBridge” @3 GHz) | | o 1
0] 3] |||I\|||4] \||||\|S] |\|I||||6]] \||||\7
10 10 10 10 10
Jmax

(c) RRZE 2018 Node-Level Performance Engineering 107

Jacobi Stencil — OpenMP parallelization rr?:

______——— |Basicguideline:

1SOMP PARALLEL DO SCHEDULE (STATIc) |Parallelize outermostloop
do k=1, kmax
do j=1, jmax

v(j, k) = 1/4.*%(x43-1,k) +x(j+1,k) &
x(J,k-1) +x(j, k+1))
enddo
enddo

Equally large chunks in k-direction
- “Layer condition” for each thread

“Layer condition”:

: Cs, = cache per thread
3 *imax * 8B < CS./2

(c) RRZE 2018 Node-Level Performance Engineering 108

OpenMP parallelization and blocking for shared cache rr?:

Example: 2D 5-point stencil on

—=] Sandy Bridge 8-core, 20 MB L3

| __—= Optimal jblock for 1 thread is too
small for multiple threads

Smaller but constant jblock works

- — 40B/LUP Roofline \ for few threads but not for all

Optimal blocking for shared cache
requires adaptive block size

1800 — | | [
L _ 6 .
16001 jmax = 1.2 X 10 |
1400
2 1200 -
=) i
—]
= 1000
8 -
§ 800 {—
5 - =+ 24B/LUP Roofline
E 600 — o—o no blocking
w00l o0 jblock = 2.3 x 10°
! v jblock = 1.1 x 10’
200 B A=A jblock = 2.3 x 10> / nthreads
oL | | | I I l ||

(c) RRZE 2018

3 4 5 6 7
cores

8

Pattern!
Excess data

volume

Node-Level Performance Engineering 109

Stencil shapes and layer conditions rrE:

(a) (b) (c) (d)

Long-range r = 2: 5 layers (2r + 1)
Long-range r = 2 with gaps: 6 layers (2 per populated row)
Asymmetric: 3 layers

2D box: 3 layers

(c) RRZE 2018 Node-Level Performance Engineering 112

Conclusions from the Jacobi example rr?_

We have made sense of the memory-bound performance vs.
problem size

“Layer conditions” lead to predictions of code balance
“What part of the data comes from where” is a crucial question
The model works only if the bandwidth is “saturated”

In-cache modeling is more involved

Avoiding slow data paths == re-establishing the most favorable
layer condition

Improved code showed the speedup predicted by the model
Optimal blocking factor can be estimated

Be guided by the cache size the layer condition

No need for exhaustive scan of “optimization space”
Food for thought

Multi-dimensional loop blocking — would it make sense?

Can we choose a “better” OpenMP loop schedule?

What would change if we parallelized inner loops?

(c) RRZE 2018 Node-Level Performance Engineering 113

Shortcomings of the roofline model

Saturation effects in multicore chips are not explained

Reason: “saturation assumption”

Cache line transfers and core execution do sometimes not overlap perfectly
It is not sufficient to measure single-core STREAM to make it work

Only increased “pressure” on the memory
interface can saturate the bus
- need more cores!

In-cache performance is not correctly
predicted

The ECM performance model gives more
insight:

H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying
performance bottlenecks of stencil computations using the
Execution-Cache-Memory model. Proc. ICS15, the 29th
International Conference on Supercomputing, June 8-11, 2015,

Newport Beach, CA. DOI: 10.1145/2751205.2751240.
Preprint: arXiv:1410.5010

Memory bandwidth [GB/s]
SRR - -

L

A(:)=B(:)+C(:)*D(:)

| | | | | | | |
1 2 3 4 5 6 7 8
cores

(c) RRZE 2018 Node-Level Performance Engineering 114

http://www.cs.ucr.edu/~ics15/
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010

Case study:
Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication (SpMV) [m'—

Key ingredient in some matrix diagonalization algorithms
Lanczos, Davidson, Jacobi-Davidson

Store only N,, nonzero elements of matrix and RHS, LHS vectors with
N, (humber of matrix rows) entries

“Sparse”™: N, ~ N,

N
General case:
— +) some indirect
> Nf addressing
required!
)

(c) RRZE 2018 Node-Level Performance Engineering 116

SpMVM characteristics REC=

For large problems, SpMV is inevitably memory-bound
Intra-socket saturation effect on modern multicores

SpMV is easily parallelizable in shared and distributed memory
Load balancing
Communication overhead

Data storage format is crucial for performance properties

Most useful general format on CPUs:
Compressed Row Storage (CRS)

Depending on compute architecture

(c) RRZE 2018 Node-Level Performance Engineering 117

CRS matrix storage scheme _

column index

1234.. = wval[] stores all the nonzeros
(length N_,)

* col idx[] stores the column index
of each nonzero (length N_,)

* row ptr[] stores the starting index

of each new row in val[] (length:
N,)

B~ WN B

row index

N O 0 v v I N

11213|5|1[2|5[1[3[4]6]3]4]7]1]|12|5|8] ... col_idx[]

115]18]12]15]19] ... row_ptrl]

(c) RRZE 2018 Node-Level Performance Engineering 118

Case study: Sparse matrix-vector multiply rrEE

Strongly memory-bound for large data sets
Streaming, with partially indirect access:

ISOMP parallel do schedule (???)

do i = 1,N_

do j = row ptr(i), row ptr(i+l) - 1
c(i) = c(i) + * b(col idx(j))

enddo

enddo

ISOMP end parallel do

Usually many spMVMs required to solve a problem

Now let’s look at some performance measurements...

(c) RRZE 2018 Node-Level Performance Engineering 119

Performance characteristics

Strongly memory-bound for large data sets - saturating performance

across cores on the chip

Performance seems to depend on the matrix

Can we explain
this?

Is there a
“light speed”
for SpMV?

Optimization?

(c) RRZE 2018

8k

Performance [Gflop/s]

| |
10-core lvy

| Bridge, static

scheduling

277

777

o—o DLR1
o—0 scai
o= Kkt _power

2 4 6 8 10
cores
Node-Level Performance Engineering 121

Example: SpMV node performance model rr?:

S
Sparse MVM in do i = 1,N,
double precision do j =[row_ptr(G)] row ptr(i+1) - 1
w/ CRS data storage: C(i) = C(i)]+[va1(§)]|*iBlco1_iax ()P
enddo
enddo

814 -H8a20/N,, ,.-|B 10 \ B
BPP.CRS _ L= =L — | 6440+ -
C) F Ivﬁzr F

Absolute minimum code balance: B, = 6 % » Hard upper limit for
In-memory
1F
2 Inax = 6 B performance: bs/Bnin

(c) RRZE 2018 Node-Level Performance Engineering 122

The “a effect” [='—

DP CRS code balance DP.CRS 8+4+8a+20/N,,,, B
a quantifies the traffic B,) = 5 F
for loading the RHS 0 \B

a =0 > RHS is in cache = (6+40(+ ~) F
a = 1/N_,. = RHS loaded once nzr

nzr
a =1 - no cache

a > 1 - Houston, we have a problem!
“Target” performance = bs/B,
Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict a?
Not in general

Simple cases (banded, block-structured): Similar to layer condition analysis

- Determine a by measuring the actual memory traffic

(c) RRZE 2018 Node-Level Performance Engineering 123

Determine a (RHS traffic quantification) [m'—

Bé)P’CRS — (6-|—40(-I— 10)E — Vmeas
N,,/F N, -2F

Vheas 1S the measured overall memory data traffic (using, e.g., likwid-
perfctr)

Solve for a: 1(Vineas 10 >

N,,, - 2 bytes B N, .

a=-—

Example: kkt_power matrix from the UoF collection
on one Intel SNB socket

N,, = 14.6-10% N, = 7.1

Vineas = 258 MB

-2 a = 0.36, aN,,, = 2.5

- RHS is loaded 2.5 times from memory

and: \
RDP.CRS

c (@) — 111 __— 11% extra traffic >
BDP,CRS(l/N) o optimization potential!
Cc nzr
(c) RRZE 2018 Node-Level Performance Engineering 124

Three different sparse matrices rrEE

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, bs = 46.6 GB/s

Matrix N N, BPY [BIF] Pope [GFIS]
DLR1 278,502 143 6.1 7.64
scail 3,405,035 7.0 8.0 5.83
kkt_power 2,063,494 7.08 8.0 5.83

DLR1 scail kkt _power

(c) RRZE 2018 Node-Level Performance Engineering 125

Performance [Gflop/s]

Now back to the start...

absolute upper limit
B,=6B/F

STAT

o=0 scait

scail, kkt_power upper limit

o= Kkt power

/‘
IC,2048

(@)

| 50F

N w
o o
| I

Measured memory bandwidth [Gb
o
T

o

L b, = 46.6 Gbyte/s

o—0 DLR1
0=0 scail

o= Kkt _power
| | |

yaE

STATIC, 2048

(c) RRZE 2018

2 4 6
cores

[=

bs = 46.6 GB/s, B™" = 6B/F
Maximum spMVM performance:

Py = 7.8GF/s

DLR1 causes minimum CRS code
balance (as expected)

scail measured balance:

BMeas ~ 8.5 B/F > BP*

- good BW utilization, slightly non-
optimal a

kkt power measured balance:

BMeas ~ 8.8 B/F > BP*

- performance degraded by load
Imbalance, fix by block-cyclic
schedule

Node-Level Performance Engineering 126

Investigating the load imbalance with kkt_power rr?:

25:— (a)

Measurements with likwid-perfctr
(MEM_DP group)

Il Instructions retired

6 (b) 7] FP operations —

I [Instructions retired

> Fewer overall instructions, (almost) 2
BW saturation, 50% better
performandce with load balancing

- CPI value unchanged!

(c) RRZE 2018 Node-Level Performance Engineering 127

Roofline analysis for spMVM rr?:

Conclusion from the Roofline analysis

The roofline model does not “work” for spMVM due to the RHS
traffic uncertainties

We have “turned the model around” and measured the actual
memory traffic to determine the RHS overhead

Result indicates:
how much actual traffic the RHS generates
how efficient the RHS access is (compare BW with max. BW)
how much optimization potential we have with matrix reordering

Do not forget about load balancing!

Consequence: Modeling is not always 100% predictive. It's all about
learning more about performance properties!

(c) RRZE 2018 Node-Level Performance Engineering 128

Case study:
Tall & Skinny Matrix-Transpose Times
Tall & Skinny Matrix (TSMTTSM)

Multiplication

TSMTTSM Multiplication =

Block of vectors - Tall & Skinny Matrix (e.g. 107 x 10* dense matrix)
Row-major storage format (see SpMVM)

Block vector subspace orthogonalization procedure requires, e.g.
computation of scalar product between vectors of two blocks

TSMTTSM Mutliplication

y = QIR S A+
VIV Y (> Y|V O
Assume:a =1; B =0 -
C =ua A" * B rpC

(c) RRZE 2018 Node-Level Performance Engineering 130

TSMTTSM Multiplication [m'—

General rule for dense matrix-matrix multiply: Use vendor-optimized
GEMM, e.g. from Intel MKL*:

K
CmnzzAkaknr m=1M,n=1N
double =1

160 GF/s 91%

Intel Xeon E5 2660 v2 SQ
176 GF/s 52 GB/s
10c@2.2 GHz TS 16.6 GF/s 6%

S 550 GF/s 95%
'”te'lﬁi"@”fgé,ﬁf V3 | 582 GE/s 65 GB/s Q
- A TS 22.8 GF/s 4%

complex double }/ TS@MKL:

Good or bad?

Matrix sizes:
Square (SQ): M=N=K=15,000
Tall&Skinny (TS): M=N=16 ; K=10,000,000

lintel Math Kernel Library (MKL) 11.3

Node-Level Performance Engineering 131

TSMTTSM Roofline model rrEE

Computational intensity N X R
K IT -
- #lops T = oIS ; ST o L+
#bytes (slowest data path) TR M 2
C =a AT « B +p C

Optimistic model (minimum data transfer) assuming M = N «< K and

double precision:
2KMN F MF

I, ~ —=——
¢~ 8(KM +KN)B 8B

complex double:
8KMN F_MF

I, ~ —=—
27 16(KM+KN)B 4B

Node-Level Performance Engineering 132

TSMTTSM Roofline performance prediction [m'—

16
8

16

Now choose M =N =16 2 I; = and[zz:

| =
| =

Intel Xeon E5 2660 v2 (bs = 52G—f) 2> P= 104% (double)

Measured (MKL): 16.6 %

Intel Xeon E5 2697 v3 (bs = 65=) > P= 240% (double complex)

Measured (MKL): 22.8 %

- Potential speedup: 6-10x vs. MKL

Node-Level Performance Engineering 133

Can we implement a TSMTTSM kernel than Intel?

| #pragma omp pary‘ Thread local copy of small (results) matrix
2 {

3 double c_tmp[nxm] = {0.}; Long Loop (k): Parallel
4

s #pragma omp for
6 for (int row = @; row < k-1; row+=2) {

! Outer Loop Unrolling

7 for (int bcol = @; bcol < n; bcol++) { N

8 #pragma simd | Compiler directives
9 for (int acol = ©; acol < m; acol++) {

10 c_tmpl[bcol*m+acol] +=

11 al(row+@)*m + acol] * b[(row+@)xn + bcol] + >>

12 al(row+1)*m + acol] % b[(row+1)*n + bcol]; Most operations

13 } in cache

14 }

15 } «/

16
17 #pragma omp critical |
18 for (int bcol = @; bcol < n; bcol++) {

19 #pragma simd

Reduction on
small result matrix

20 for (int acol = @; acol < m; acol++) {
21 c[bcolxm+acol] += c_tmp[bcol*m+acol];
22 }

23 }

24 }

Not shown: Inner Loop boundaries (n,m) known at compile time (kernel generation)
k assumed to be even

Node-Level Performance Engineering 134

TSMTTSM MKL vs. “hand crafted” (OPT)

[T

ﬁ—
L

TS: M=N=16 ; K=10,000,000

4 8 12 16 20 24 28 32

n

Node-Level Performance Engineering

4 8 12 16 20 24 28 32

n

Intel Xeon E5 2660 v2 | 176 GF/s TS OPT 98 GF/s 94 %
10c@2.2 GHz 52 GB/s TS MKL 16.6 GF/s 16 %
Intel Xeon E5 2697 v3 | 582 GF/s TS OPT 159 GF/s 66 %
14c@2.6GHz 65 GB/s TS MKL 22.8 GF/s 9.5 %
26.65 13.35
Speedup
vs. MKL.:
5X — 25X
5.25
7.77
0.99 0.45

135

ERLANGEN REGIONAL

COMPUTING CENTER

Single Instruction Multiple Data
(SIMD)

= o=
g E
E E AL

SIMD terminology

A word on terminology

= SIMD == “one instruction > several operations”

“SIMD width” == number of operands that fit into a register

No statement about parallelism among those operations

Original vector computers: long registers, pipelined execution, but no

R1 R2

parallelism (within the instruction)

Today
= X86: most SIMD instructions fully parallel
= “Short Vector SIMD”

= Some exceptions on some archs (e.g., vdivpd)
= NEC Tsubasa: 32-way parallelism but
SIMD width = 256 (DP)

Node-Level Performance Engineering

Scalar execution units

for (int j=0; j<size; j++){ Scalar execution
A[j] = B[]j] + C[3];

}
Register widths
1 operand

« 2 operands (SSE)

« 4 operands (AVX)

« 8 operands (AVX512)

Node-Level Performance Engineering

Data-parallel execution units (short vector SIMD)
Single Instruction Multiple Data (SIMD)

for (int j=0; j<size; j++) {

A[j] = B[j] + C[i]; SIMD execution

}
TR ,\\ =

Register widths
1 operand

« 2 operands (SSE)

« 4 operands (AVX)

« 8 operands (AVX512)

Node-Level Performance Engineering

Example: Data types in 32-byte SIMD registers (AVX][2])

= Supported data types depend on actual SIMD instruction set

‘ Scalar slot

double - double . double : double
float float float : float float float : float fleoat
int . int . int . int . int . int . int | int

Node-Level Performance Engineering

In-core features are driving peak performance

AVX512

FMA /

= @9 Pecak Bandwidth 3
- | @@ Peak Flops |w\;§dge 2.7 :
- Sandy Bridge 2. -
5 _
w 10E . E
Il - I Broadwe]l 2.2
= - |]
- i | Westmere 2.93
S5 I Nehalem 3.2
% 10 | Core 2 Quad 3.4 —
o = Core 2 Duo 3.0 =
o - | Pentium D 3.6]
TH u I _
p= . ! . .
1 , -
10° : multicore =
- 3600 I]
! ? 45ginglﬁe core : i
) P200 == :
10° | =
- | I | I | I | I | | | I | I | I | I | I | L
1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Year

Node-Level Performance Engineering

SIMD processing — Basics

Steps (done by the compiler) for “SIMD processing”

for(int i=0; i<n;i++) This
C[i]l=A[i]+BI[i];] : ”
Loop unrolling should
not be
for(int i=0; i<n;i+=4) { done
C[i] =A[i] +B[i]~; b
C[i+1]=A[i+1]+B[i+1]; y
C[i+2]=A[i+2]+B[i+2]; hand!
C[i+3]=A[i+3]+B[i+3];}
//remainder loop handling j
Load 256 Bits starting from address of A[i] to LABELI :
. \
register RO > VLOAD RO € A[i]
VLOAD R1 € BJ[i]
Add the corresponding 64 Bit entries in RO and — V64ADD[RO,R1] > R2

R1 and store the 4 results to R2 //ViTOff R2 = C[i]
1 1

i<(n-4)? JMP LABEL1

Store R2 (256 Bit) to address / //remainder loop handling
starting at C[1i]

Node-Level Performance Engineering

SIMD processing — Basics

No SIMD vectorization for loops with data dependencies:

for (int 1=0; i<n;i++)
A[i]=A[i-1]*s;

“Pointer aliasing” may prevent SIMDfication

void f (double *A, double *B, double *C, int n) {
for(int i=0; i<n; ++1i)
C[i] = A[i] + B[i];
}
C/C++ allows thatA = &C[-1] andB = &C[-2]

- C[i] = C[i-1] + C[i-2]: dependency > No SIMD
If “pointer aliasing” is not used, tell the compiler:

—fno-alias (Intel), -Msafeptr (PGI), ~-fargument-noalias (gccC)
restrict keyword (C only!):

void f (double restrict *A, double restrict *B, double restrict *C, int n) {..}

Node-Level Performance Engineering

How to leverage SIMD: your options

Options:

The compiler does it for you (but: aliasing, alignment, language,
abstractions)

Compiler directives (pragmas)

Alternative programming models for compute kernels (OpenCL, ispc)
Intrinsics (restricted to C/C++)

Implement directly in assembler

To use intrinsics the following headers are available:
xmmintrin.h (SSE)
pmmintrin.h (SSE2)
immintrin.h (AVX)

Hh
(o}
H
[
a}
r'.

t o o o
WNHFE O
o nu

j=0; j<size; j+=16) {
mm loadu ps(data+j);
mm loadu ps(data+j+4);
mm loadu ps(data+j+8);
mm loadu ps(data+j+12);
_mm_add ps(sumO, tO0);

_mm _add ps(suml, tl);

_mm_add ps(sum2, t2);

_mm_add ps(sum3, t3);

0]
c
3
o

suml
sum2

x86intrin.h (all extensions)

0]
e
3
W

Node-Level Performance Engineering

Vectorization compiler options (Intel)

= The compiler will vectorize starting with —02.

* To enable specific SIMD extensions use the —x option:
= -xXSSE2 vectorize for SSE2 capable machines
Available SIMD extensions:

SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX,

= —-xAVX on Sandy/lvy Bridge processors
= -XCORE-AVX2 on Haswell/Broadwell

= -xCORE-AVX512 on Skylake (certain models)

= —-xMIC-AVX512 on Xeon Phi Knights Landing

Recommended option:

= -xHost will optimize for the architecture you compile on
(Caveat: do not use on standalone KNL, use MIC-AVX512)

= To really enable 512-bit SIMD with current Intel compilers you need to set:
-gopt-zmm-usage=high

Node-Level Performance Engineering

User-mandated vectorization (OpenMP 4)

= Since OpenMP 4.0 SIMD features are a part of the OpenMP standard
" #pragma omp simd enforces vectorization
= Essentially a standardized “go ahead, no dependencies here!”

= Do not lie to the compiler here!

= Prerequesites:
= Countable loop
= |nnermost loop

= Must conform to for-loop style of OpenMP worksharing constructs
= There are additional clauses:
reduction, vectorlength, private, collapse,
for (int j=0; j<n; jJ++) {
#pragma omp simd reduction(+:b[j:1])
for (int i=0; i<n; i++) {
b[j] += al[]J]I[i]’
}

Node-Level Performance Engineering

Xx86 Architecture:
SIMD and Alignment

= Alignment issues

= Alignment of arrays should optimally be on SIMD-width address boundaries
to allow packed aligned loads (and NT stores on x86)

= Otherwise the compiler will revert to unaligned loads/stores

= Modern x86 CPUs have less (not zero) impact for misaligned
LOAD/STORE, but Xeon Phi KNC relies heavily on it!

= How is manual alignment accomplished?

= Stack variables: alignas keyword (C++11/C11)
= Dynamic allocation of aligned memory (align = alignment boundary)
= C before C11 and C++ before C++17:
posix memalign(void **ptr, size t align, size t size);
= C11 and C++17:
aligned alloc(size_ t align, size t size);

Node-Level Performance Engineering

SIMD is an in-core feature! rrEE

DP sum reduction (single core) do i = 1,N
s = s + A(1)

enddo
Intel Broadwell EP 2.3 GHz Intel KNL 1.3 GHz
10000 I IIIIHI| I IIIIIH| I IIIIHI| I IIIHH| I I\IHII| 12000 T III\IHI T 1 |||||| T \|\||||| T \|||\||| T ||||||||
- — AVX2] I — AVX-512 |
— 8000} —- scalar _ _ 10000 - — - scalar 7
Q (@]
(b} (1)) B]
L% = 0
‘g’_ "8’_ 8000 —
= 6000 =
TH TH - .
s < (b)
o - o 6000 —
- 2
% 4000 e - i
[4v]
S i s 4000 —
£ =
S . A o - 1
2000 2000 |
i - L 77
i -
0 | IIIIHII | IIIIIHI | IIIIHII | IIIHHI | I\IHIII 0 | III\IHI | I\IIIIII | \I\IIIII | \IIHIII | 1]l
10° 10" 10> 10° 10’ 10° 10* 10° 10° 10’
Loop length N Loop length N

(c) RRZE 2018 Node-Level Performance Engineering 148

Rules for vectorizable loops rl_ -

Inner loop

Countable (loop length can be determined at loop entry)
Single entry and single exit

Straight line code (no conditionals)

No (unresolvable) read-after-write data dependencies
No function calls (exception intrinsic math functions)

Better performance with:
Simple inner loops with unit stride (contiguous data access)
Minimize indirect addressing
Align data structures to SIMD width boundary

In C use the restrict keyword and/or const qualifiers and/or
compiler options to rule out array/pointer aliasing

(c) RRZE 2018 Node-Level Performance Engineering 149

Efficient parallel programming
on ccNUMA nodes

Performance characteristics of ccNUMA nodes
First touch placement policy

ccNUMA performance problems rl——|—
“The other affinity” to care about

ccNUMA:
Whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)

How do we make sure that memory access is always as "local" and
"distributed" as possible?

[wmr) o [wmew)

Note: Page placement is implemented in units of OS pages (often 4kB,
possibly more)

(c) RRZE 2018 Node-Level Performance Engineering 151

How much bandwidth does nonlocal access cost? _

Example: AMD “Epyc” 2-socket system (8
chips, 2 sockets, 48 cores): STREAM Triad
bandwidth measurements [Gbyte/s]

CPU node 0 1 2 3 4 5 6 7
MEM node

Socket O

Socket 1

6 219 | 21.9

7 219 | 21.9

(c) RRZE 2018 Node-Level Performance Engineering 152

numactl as a simple ccNUMA locality tool :
How do we enforce some locality of access?

numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node>
and others if <node> is full
--interleave=<nodes> a.out # map pages round robin across
all <nodes>

Examples:

for m in 'seq 0 3°; do
for ¢ in 'seqgq 0 3°; do
env OMP NUM THREADS=8 \
numactl --membind=$m --cpunodebind=$c ./stream

ccNUMA map scan

done
done

env OMP NUM THREADS=4 numactl --interleave=0-3 \
likwid-pin -c N:0,4,8,12 ./stream

But what is the default without numactl?

(c) RRZE 2018 Node-Level Performance Engineering 153

ccNUMA default memory locality rrEE

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the
processor that first touches it!

Except if there is not enough local memory available
This might be a problem, see later

Caveat: “to touch” means “to write", not “to allocate”

Example' Memory not
| /— mapped here yet

double *huge = (double*)malloc (N*sizeof (double)) ;

for (i=0; i<N; i++) // or i+=PAGE SIZE/sizeof (double)

huge[l] = 0-0; x

Mapping takes
place here

It is sufficient to touch a single item to map the entire page

(c) RRZE 2018 Node-Level Performance Engineering 154

Coding for ccNUMA data locality =

Most simple case: explicit initialization

integer,parameter :: N=10000000 || integer ,parameter :: N=10000000
double precision A(N), B(N) double precision A(N) ,B(N)
1SOMP parallel

1SOMP do schedule(static)
doi=1, N

A=0.d0 A(i)=0.d0

end do

1SOMP end do

'SOMP do schedule(static)
doi=1, N

B(i) = function (A(i))
end do

1SOMP end do
ISOMP end parallel

1SOMP parallel do
doi=1, N

B(i) = function (A(i))
end do
1SOMP end parallel do

(c) RRZE 2018 Node-Level Performance Engineering 155

Coding for ccNUMA data locality =

Sometimes initialization is not so obvious: I/0O cannot be easily
parallelized, so “localize™ arrays before 1/O

integer,parameter :: N=10000000 || integer ,parameter :: N=10000000
double precision A(N), B(N) double precision A(N) ,B(N)
(|| 'SOMP parallel
1SOMP do schedule (static)
doi=1, N
A(1i)=0.d0
end do
1SOMP end do
1SOMP single
READ (1000) A
\| | 'SOMP end single

READ (1000) A

I$SOMP parallel do 1SOMP do schedule (static)
doi=1, N doi=1, N

B(i) = function (A(i)) B(i) = function (A(i))
end do end do
1SOMP end parallel do ISOMP end do

ISOMP end parallel

(c) RRZE 2018 Node-Level Performance Engineering 156

Coding for Data Locality rrEE

Required condition: OpenMP loop schedule of initialization must be the
same as in all computational loops

Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to
be sure...

Imposes some constraints on possible optimizations (e.g. load balancing)

Presupposes that all worksharing loops with the same loop length have the
same thread-chunk mapping

If dynamic scheduling/tasking is unavoidable, more advanced methods may
be in order

OpenMP 5.0 will have rudimentary memory affinity functionality
How about global objects?
Better not use them

If communication vs. computation is favorable, might consider properly
placed copies of global data

C++: Arrays of objects and std: : vector<> are by default initialized
sequentially
STL allocators provide an elegant solution

(c) RRZE 2018 Node-Level Performance Engineering 157

Coding for Data Locality: .

AN
2
N
O
Placement of static arrays or arrays of objects OQ\\

Don't forget that constructors tend to touch the data members of
an object. Example:

class D {
double d;
public:
D(double d=0.0) throw() : d(d) {}
inline D operator+(const D& o) throw() {
return D(d+o.d);
}
inline D operator* (const D& o) throw() {
return D(d*o.d) ;

}
};

— placement problem with
D* array = new D[1000000];

(c) RRZE 2018 Node-Level Performance Engineering 158

Coding for Data Locality:
Parallel first touch for arrays of objects

Solution: Provide overloaded D: :operator new|[]

void* D::operator new[] (size_t n) ({

* — ;
char *p = new char[n]; // allocate parallel first
touch
size t i,j;

#pragma omp parallel for private(j) schedule(...)
for(i=0; i<n; i += sizeof (D))
for (j=0; j<sizeof (D); ++j)
pli+j] = 0;
return p;

}

void D: :operator delete[] (void* p) throw() ({

delete [] static_cast<char*>p;
}

Placement of objects is then done automatically by the C++ runtime via
“placement new”

(c) RRZE 2018 Node-Level Performance Engineering 159

Coding for Data Locality:
NUMA allocator for parallel first touch in std: : vector<>

template <class T> class NUMA Allocator ({
public:
T* allocate(size type numObjects, const void
*localityHint=0) ({
size type ofs,len = numObjects * sizeof(T);
void *m = malloc(len);
char *p = static_cast<char*>(m) ;
int i,pages = len >> PAGE BITS;
#pragma omp parallel for schedule(static) private (ofs)
for (i=0; i<pages; ++1i) {
ofs = static cast<size t>(i) << PAGE BITS;
plofs]=0;
}

return static_cast<pointer>(m) ;

}

b Application:

vector<double ,NUMA Allocator<double> > x(10000000)

(c) RRZE 2018 Node-Level Performance Engineering 160

Diagnosing bad locality rrEE

If your code is cache bound, you might not notice any locality problems

Otherwise, bad locality limits scalability
(whenever a ccNUMA node boundary is crossed)

Just an indication, not a proof yet

Running with numactl --interleave might give you a hint
See later

Consider using performance counters
LIKWID-perfctr can be used to measure nonlocal memory accesses
Example for Intel dual-socket system (lvyBridge, 2x10-core):

likwid-perfctr -g NUMA -C M0:0-4@M1:0-4 ./a.out

(c) RRZE 2018 Node-Level Performance Engineering 161

Using performance counters for diagnosing bad ccNUMA rr—.—
access locality

Intel Ivy Bridge EP node (running 2x5 threads):
measure NUMA traffic per core

likwid-perfctr -g NUMA -C M0:0-4@M1:0-4 ./a.out

Summary output:

e bt e et e e T e e e TP +
Metric | Sum | Min | Max | Avg
e bt e et e e T e e e TP +
Runtime (RDTSC) [s] STAT | 4.050483 | 0.4050483 | 0.4050483 | 0.4050483
Runtime unhalted [s] STAT | 3.03537 | 0.3026072 | 0.3043367 | 0.303537
Clock [MHz] STAT | 32996.94 | 3299.692 | 3299.696 | 3299.694
CPI STAT | 40.3212 | 3.702072 | 4.244213 | 4.03212
Local DRAM data volume [GByte] STAT | 7.752933632 | 0.735579264 | 0.823551488 | 0.7752933632
Local DRAM bandwidth [MByte/s] STAT | 19140.761 | 1816.028 | 2033.218 | 1914.0761
Remote DRAM data volume [GByte] STAT | 9.16628352 | 0.86682464 | 0.957811776 | 0.916628352
Remote DRAM bandwidth [MByte/s] STAT | 22630.098 . | 2140.052 | 2364.685 | 2263.0098
Memory data volume [GByte] STAT | 16.919217152 1.690376128 | 1.69339104 | 1.6919217152
Memory bandwidth [MByte/s] STAT | 41770.861 4173.27 | 4180.714 | 4177.0861
o - et e Nttt Fo—mm - Fommm - +

About half of the overall
memory traffic is caused by
remote domain!

Caveat: NUMA metrics vary
strongly between CPU models

(c) RRZE 2018 Node-Level Performance Engineering 162

The curse and blessing of interleaved placement: —
OpenMP STREAM triad on a dual AMD Epyc 7451 (6 cores per LD) r r —

i_

Parallel init: Correct parallel initialization
LDO: Force data into LDO via numactl -m 0
Interleaved: numactl --interleave <LD range>

2501 | | | | | | |]

B8 Parallel placement
B LDO placement
200 W Interleaved placement |

150 .

100 .

Bandwidth [GB/s]

1 2 3 4 5 6 7 8
of locality domains

(c) RRZE 2018 Node-Level Performance Engineering 168

Summary on ccNUMA issues rr?:

ldentify the problem

Is ccNUMA an issue in your code?
Simple test: run with numactl --interleave

Apply first-touch placement
Look at initialization loops
Consider loop lengths and static scheduling
C++ and global/static objects may require special care
NUMA balancing is active on many Linux systems today
Automatic page migration
Slow process, may take many seconds (configurable)
Still a good idea to to parallel first touch

If dynamic scheduling cannot be avoided
Consider round-robin placement as a quick (but non-ideal) fix
OpenMP 5.0 will have some data affinity support

(c) RRZE 2018 Node-Level Performance Engineering 169

OpenMP performance issues on multicore

Barrier synchronization overhead
Topology dependence

The OpenMP-parallel vector triad benchmark

OpenMP work sharing in the benchmark loop

double precision, dimension(:), allocatable

allocate(A(1:N),B(1:N),C(1:N),D(1:N))
A=1.d0; B=A; C=A; D=A
'SOMP PARALLEL private (i, j)
do j=1,NITER
1SOMP DO
do i=1,N
A(i) = B(i) + C(i) * D(1i)

enddo /I Implicit barrier
1SOMP END DO

if (.something.that.is.never.true.) then
call dummy (A,B,C,D)
endif
enddo
!SOMP END PARALLEL

(c) RRZE 2018 Node-Level Performance Engineering

172

OpenMP vector triad on Sandy Bridge sockets (3 GHz)

35
= T1=1
— T=8 (1 socket)
0 | — T=16 (2 sockets)

2
Ln
!

Pattern!

B OpenMP barrier
overhead

sync

overhead

grows with #

B of threads

Performance [GFlop/s]
=
| |

=
=

L1 core limit

T

5

10 10° 10 10* 10 10
Loop length

(c) RRZE 2018 Node-Level Performance Engineering

bandwidth
scalability
across
memory
interfaces

173

Welcome to the multi-/many-core era rr—|—
Synchronization of threads may be expensive!

!SOMP PARALLEL ..

Threads are synchronized at explicit AND

| SOMP BARRIER implicit barriers. These are a main source of
1 SOMP DO overhead in OpenMP progams.

1SOMP ENDDO Determine costs via modified OpenMP
1SOMP END PARALLEL Microbenchmarks testcase (epcc)

On x86 systems there is no hardware support for synchronization!
Next slides: Test OpenMP Barrier performance...
for different compilers

and different topologies:
shared cache
shared socket
between sockets
and different thread counts
2 threads
full domain (chip, socket, node)

(c) RRZE 2018 Node-Level Performance Engineering 174

Thread synchronization overhead on IvyBridge-EP — —
Barrier overhead in CPU cycles r I-

2 Threads Intel 16.0 GCC 5.3.0
Shared L3 599 425
SMT threads 612 423
Other socket 1486 1067

\ e

Strong topology
dependence!
Full domain Intel 16.0 GCC 5.3.0
Socket (10 cores) 1934 1301
Node (20 cores) 4999 7783
Node +SMT 5981 9897

Mermory Interface — Mermory Interface

Overhead grows
with thread count

Strong dependence on compiler, CPU and system environment!

OMP WAIT POLICY=ACTIVE can make a big difference

(c) RRZE 2018

Node-Level Performance Engineering 175

Thread synchronization overhead on Xeon Phi 7210 (64-core) — —
Barrier overhead in CPU cycles (Intel C compiler 16.03) r I-

2 threads on

distinct cores:
730 \

SMT1 SMT2 SMT3 SMT4
One core \\ n/a 963 1580 2240
Full chip N 5720 8100 9900 11400

Still the pain may be much larger, as more work can be done in one cycle
on Phi compared to a full lvy Bridge node

3.2x cores (20 vs 64) on Phi
4x more operations per cycle per core on Phi

2> 4-3.2=12.8x more work done on Xeon Phi per cycle

1.9x more barrier penalty (cycles) on Phi (11400 vs. 6000)

- One barrier causes 1.9 -12.8 = 24x more pain ©.

(c) RRZE 2018 Node-Level Performance Engineering 176

Pattern-driven
Performance Engineering

Basics of Benchmarking
Performance Patterns
Signatures

Basics of optimization

Define relevant test cases

Establish a sensible performance metric

Acquire a runtime profile (sequential)

Identify hot kernels (Hopefully there are any!) Iteratively
Carry out optimization process for each kernel

Motivation:
Understand observed performance
Learn about code characteristics and machine capabilities

Deliberately decide on optimizations

(c) RRZE 2018 Node-Level Performance Engineering 178

Best practices for benchmarking

Preparation
Reliable timing (minimum time which can be measured?)
Document code generation (flags, compiler version)
Get access to an exclusive system
System state (clock speed, turbo mode, memory, caches)
Consider to automate runs with a script (shell, python, perl)

Doing
Affinity control
Check: Is the result reasonable?
Is result deterministic and reproducible?
Statistics: Mean, Best ?
Basic variants: Thread count, affinity, working set size

(c) RRZE 2018 Node-Level Performance Engineering 179

Thinking in bottlenecks

A bottleneck is a performance limiting setting
Microarchitectures expose numerous bottlenecks

Observation 1.
Most applications face a single bottleneck at a time!

Observation 2:
There is a limited number of relevant bottlenecks!

(c) RRZE 2018 Node-Level Performance Engineering

180

Performance Engineering Process: Analysis
Algorithm/Code Hardware/Instruction
Analysis

Microbenchmarking
(\ /7 Application
The set of input data indicating Benchmarking

a pattern is its signature

2/ e
Performance

patterns are
Pattern typical
performance

limiting motifs

set architecture

Step 1 Analysis: Understanding observed performance

(c) RRZE 2018 Node-Level Performance Engineering 181

Performance Engineering Process: Modeling

Performance Model Quantitative view

Validation < Traces/HW metrics

Step 2 Formulate Model: Validate pattern and get quantitative insight

Wrong pattern

(c) RRZE 2018 Node-Level Performance Engineering 182

Performance Engineering Process: Optimization

: Performance
Improves until next
Performance Model bottleneck is hit

Optimize for better Eliminate non-

Improves
Performance

resource utilization expedient activity

Step 3 Optimization: Improve utilization of available resources

(c) RRZE 2018 Node-Level Performance Engineering 183

Performance pattern classification

Maximum resource utilization
(computing at a bottleneck)

Hazards
(something “goes wrong”)

Work related
(too much work or too inefficiently done)

(c) RRZE 2018 Node-Level Performance Engineering 184

Patterns (1): Bottlenecks & hazards rl_' -

Metric signature, LIKWID
performance group(s)

Pattern Performance behavior

Jacobi

Sl setLEian aturating speedup across Bandwidth meets BW of suitable

cores sharing a data path streaming benchmark (MEM, L3)

In-L1 sum _ .
: optimal code - Good (low) CP_I., mtegral ratlo of
ALU saturation Throughput at design limit(s) cycles to specific instruction

count(s) (FLOPS_*, DATA, CPI)

Excess data spMVM RHS
[e — volume access Low BW utilization / Low cache hit

et Simple bandwidth performance | ratio, frequent CL evicts or
Latency-bound model much too optimistic replacements (CACHE, DATA,
access MEM)

N

access

Large discrepancy from simple Relevant events are very
Micro-architectural performance model based on hardware-specific, e.g., memory
anomalies LD/ST and arithmetic aliasing stalls, conflict misses,
throughput unaligned LD/ST, requeue events

(c) RRZE 2018 Node-Level Performance Engineering 185

Patterns (ll): Hazards

Metric signature, LIKWID

Pattern Performance behavior
performance group(s)

Large discrepancy from

False sharing of cache :
performance model in parallel case,

Frequent (remote) CL evicts

lines bad scalability (CACHE)
intialization g4 or no scaling across NUMA Unbalanced bandwidth on
Bad ccNUMA page : : : :
| - domains, performance improves memory interfaces / High remote
placemen with interleaved page placement traffic (MEM)

In-L1 sum w/o
unrolling

In-core throughput far from design (Large) integral ratio of cycles to

Pipelining issues limit, performance insensitive to specific instruction count(s), bad
data set size (high) CPI (FLOPS_*, DATA, CPI)
Sartal T Eees See above High branch rate and branch miss

ratio (BRANCH)

(c) RRZE 2018 Node-Level Performance Engineering 186

Patterns (Ill): Work-related [[P~

Metric signature, LIKWID

Pattern Performance behavior
performance group(s)

Different amount of “work” on the
aturating/sub-linear speedup cores (FLOPS_*); note that
Instruction count is not reliable!

Load imbalance / serial

fraction SpMVM
scaling

L1 OpenMP " spheedup going down as more cores . .
vector triad . Large non-FP instruction count
Synchronization overhead are aldded_/ No speedup with small (growing with number of cores
problem sizes / Cores busy but low used) / Low CPI (FLOPS_*, CPI)
FP performance

Low CPI near theoretical limit /
Large non-FP instruction count
(constant vs. number of cores)
(FLOPS_*, DATA, CPI)

Low application performance, good
Instruction overhead scaling across cores, performance
insensitive to problem size

Expensive Many cycles per instruction (CPI)
i - if the problem is large-latency
Instructions

arithmetic
Code Similar to instruction overhead

Ineffective CiC++ aliasing Scalar instructions domlnatln*g in
: : blem data-parallel loops (FLOPS_*,
Instructions pro CPI)

(c) RRZE 2018 Node-Level Performance Engineering 187

composition

Patterns conclusion

Pattern signature = performance behavior + hardware metrics

Patterns are applies hotspot (loop) by hotspot

Patterns map to typical execution bottlenecks

Patterns are extremely helpful in classifying performance issues
The first pattern is always a hypothesis
Validation by tanking data (more performance behavior, HW metrics)
Refinement or change of pattern

Performance models are crucial for most patterns
Model follows from pattern

(c) RRZE 2018 Node-Level Performance Engineering 188

Tutorial conclusion [m'—

Multicore architecture == multiple complexities
Affinity matters = pinning/binding is essential
Bandwidth bottlenecks = inefficiency is often made on the chip level
Topology dependence of performance features - know your hardware!
Put cores to good use

Bandwidth bottlenecks - surplus cores - functional parallelism!?

Shared caches - fast communication/synchronization - better
implementations/algorithms?

Simple modeling techniques and patterns help us
... understand the limits of our code on the given hardware
... identify optimization opportunities
... learn more, especially when they do not work!

Simple tools get you 95% of the way
e.g., with the LIKWID tool suite

(c) RRZE 2018 Node-Level Performance Engineering 189

Moritz Kreutzer
Markus Wittmann
Thomas Zeiser
Michael Meier

Holger Stengel
Thomas Gruber
Faisal Shahzad
Christie Louis Alappat

SPPEAA

F Y v vy
- e
K ;fi%—/:,’h I H R
—7/7/5_/: Y / /|
THA N K YO U . % Bundesministerium
fiir Bildung

und Forschung

(c) RRZE 2018 Node-Level Performance Engineering 190

Presenter Biographies

Georg Hager holds a PhD in computational physics from the University of Greifswald. He
is a senior research scientist in the HPC group at Erlangen Regional Computing Center
(RRZE). Recent research includes architecture-specific optimization for current
microprocessors, performance modeling on processor and system levels, and the efficient
use of hybrid parallel systems. His textbook “Introduction to High Performance Computing
for Scientists and Engineers” is required or recommended reading in many HPC-related
courses around the world. See his blog at http://blogs.fau.de/hager for current activities,
publications, and talks.

Jan Eitzinger (formerly Treibig) holds a PhD in Computer Science from the University of
Erlangen. He is now a postdoctoral researcher in the HPC Services group at Erlangen
Regional Computing Center (RRZE). His current research revolves around architecture-
specific and low-level optimization for current processor architectures, performance
modeling on processor and system levels, and programming tools. He is the developer of
LIKWID, a collection of lightweight performance tools. In his daily work he is involved in all
aspects of user support in High Performance Computing: training, code parallelization,
profiling and optimization, and the evaluation of novel computer architectures.

Gerhard Wellein holds a PhD in solid state physics from the University of Bayreuth and is
a professor at the Department for Computer Science at the University of Erlangen. He
leads the HPC group at Erlangen Regional Computing Center (RRZE) and has more than
ten years of experience in teaching HPC techniques to students and scientists from
computational science and engineering programs. His research interests include solving
large sparse eigenvalue problems, novel parallelization approaches, performance
modeling, and architecture-specific optimization.

(c) RRZE 2018 Node-Level Performance Engineering 191

http://blogs.fau.de/hager

Abstract [='—

SC18 full-day tutorial: Node-Level Performance Engineering
Presenter(s): Georg Hager, Gerhard Wellein

ABSTRACT:

The advent of multi- and manycore chips has led to a further opening of the gap between
peak and application performance for many scientific codes. This trend is accelerating as
we move from petascale to exascale. Paradoxically, bad node-level performance helps to
“efficiently” scale to massive parallelism, but at the price of increased overall time to
solution. If the user cares about time to solution on any scale, optimal performance on the
node level is often the key factor. We convey the architectural features of current
processor chips, multiprocessor nodes, and accelerators, as far as they are relevant for
the practitioner. Peculiarities like SIMD vectorization, shared vs. separate caches,
bandwidth bottlenecks, and ccNUMA characteristics are introduced, and the influence of
system topology and affinity on the performance of typical parallel programming
constructs is demonstrated. Performance engineering and performance patterns are
suggested as powerful tools that help the user understand the bottlenecks at hand and to
assess the impact of possible code optimizations. A cornerstone of these concepts is the
roofline model, which is described in detail, including useful case studies, limits of its
applicability, and possible refinements.

(c) RRZE 2018 Node-Level Performance Engineering 192

Selected references [m'—

Book:

G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and Engineers.
CRC Computational Science Series, 2010. ISBN 978-1439811924
https://blogs.fau.de/hager/hpc-book

Papers:

J. Hofmann, G. Hager, G. Wellein, and D. Fey: An analysis of core- and chip-level architectural
features in four generations of Intel server processors. In: J. Kunkel et al. (eds.), High Performance
Computing: 32nd International Conference, ISC High Performance 2017, Frankfurt, Germany, June 18-
22, 2017, Proceedings, Springer, Cham, LNCS 10266, ISBN 978-3-319-58667-0 (2017), 294-314.

DOI: 10.1007/978-3-319-58667-0_16. Preprint: arXiv:1702.07554

J. Hammer, J. Eitzinger, G. Hager, and G. Wellein: Kerncraft: A Tool for Analytic Performance
Modeling of Loop Kernels. In: Niethammer C., Gracia J., Hilbrich T., Kntpfer A., Resch M., Nagel W.
(eds), Tools for High Performance Computing 2016, ISBN 978-3-319-56702-0, 1-22 (2017).
Proceedings of IPTW 2016, the 10th International Parallel Tools Workshop, October 4-5, 2016,
Stuttgart, Germany. Springer, Cham. DOI: 10.1007/978-3-319-56702-0_1, Preprint: arXiv:1702.04653

J. Hofmann, D. Fey, M. Riedmann, J. Eitzinger, G. Hager, and G. Wellein: Performance analysis of the
Kahan-enhanced scalar product on current multi- and manycore processors. Concurrency &
Computation: Practice & Experience (2016). Available online, DOI: 10.1002/cpe.3921. Preprint:
arXiv:1604.01890

M. Rohrig-Zoliner, J. Thies, M. Kreutzer, A. Alvermann, A. Pieper, A. Basermann, G. Hager, G.
Wellein, and H. Fehske: Increasing the performance of the Jacobi-Davidson method by blocking. SIAM
Journal on Scientific Computing, 37(6), C697—C722 (2015). DOI: 10.1137/140976017,
Preprint:http://elib.dlr.de/89980/

(c) RRZE 2018 Node-Level Performance Engineering 193

http://www.crcpress.com/product/isbn/9781439811924
https://blogs.fau.de/hager/hpc-book
http://dx.doi.org/10.1007/978-3-319-58667-0_16
https://arxiv.org/abs/1702.07554
http://toolsworkshop.hlrs.de/2016/
http://dx.doi.org/10.1007/978-3-319-56702-0_1
https://arxiv.org/abs/1702.04653
http://dx.doi.org/10.1002/cpe.3921
http://arxiv.org/abs/1604.01890
http://dx.doi.org/10.1137/140976017
http://elib.dlr.de/89980/

References [m'—

T. M. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D. E. Keyes: Multicore-optimized
wavefront diamond blocking for optimizing stencil updates. SIAM Journal on Scientific
Computing 37(4), C439-C464 (2015). DOI: 10.1137/140991133, Preprint: arXiv:1410.3060

J. Hammer, G. Hager, J. Eitzinger, and G. Wellein: Automatic Loop Kernel Analysis and Performance
Modeling With Kerncraft. Proc. PMBS15, the 6th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems, in conjunction with ACM/IEEE
Supercomputing 2015 (SC15), November 16, 2015, Austin, TX. DOI: 10.1145/2832087.2832092,
Preprint: arXiv:1509.03778

M. Kreutzer, G. Hager, G. Wellein, A. Pieper, A. Alvermann, and H. Fehske: Performance Engineering
of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems. Proc. IPDPS15.
DOI: 10.1109/IPDPS.2015.76, Preprint: arXiv:1410.5242

M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein: Chip-level and multi-node analysis of
energy-optimized lattice-Boltzmann CFD simulations. Concurrency and Computation: Practice and
Experience (2015). DOI: 10.1002/cpe.3489 Preprint: arXiv:1304.7664

H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil
computations using the Execution-Cache-Memory model. Proc. ICS15,
DOI: 10.1145/2751205.2751240, Preprint: arXiv:1410.5010

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse matrix data format
for modern processors with wide SIMD units. SIAM Journal on Scientific Computing 36(5), C401—
C423 (2014). DOI: 10.1137/130930352, Preprint: arXiv:1307.6209

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power properties of modern
multicore chips via simple machine models. Computation and Concurrency: Practice and Experience
(2013). DOI: 10.1002/cpe.3180, Preprint: arXiv:1208.2908

(c) RRZE 2018 Node-Level Performance Engineering 194

http://dx.doi.org/10.1137/140991133
http://arxiv.org/abs/1410.3060
http://www.dcs.warwick.ac.uk/pmbs/pmbs15/PMBS15/Welcome.html
http://sc15.supercomputing.org/
http://dx.doi.org/10.1145/2832087.2832092
http://arxiv.org/abs/1509.03778
http://www.ipdps.org/
http://dx.doi.org/10.1109/IPDPS.2015.76
http://arxiv.org/abs/1410.5242
http://dx.doi.org/10.1002/cpe.3489
http://arxiv.org/abs/1304.7664
http://www.cs.ucr.edu/~ics15/
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010
http://dx.doi.org/10.1137/130930352
http://arxiv.org/abs/1307.6209
http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

References [m'—

J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on modern multicore
processors: Best practices for performance engineering. Workshop on Productivity and Performance
(PROPER 2012) at Euro-Par 2012, August 28, 2012, Rhodes Island, Greece. DOI: 10.1007/978-3-
642-36949-0_50. Preprint: arXiv:1206.3738

M. Wittmann, T. Zeiser, G. Hager, and G. Wellein: Comparison of Different Propagation Steps for
Lattice Boltzmann Methods. Computers & Mathematics with Applications (Proc. ICMMES 2011).
Available online, DOI: 10.1016/].camwa.2012.05.002. Preprint:arXiv:1111.0922

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse Matrix-vector
Multiplication on GPGPU Clusters: A New Storage Format and a Scalable Implementation. Workshop
on Large-Scale Parallel Processing 2012 (LSPP12),

DOI: 10.1109/IPDPSW.2012.211

J. Treibig, G. Hager, H. Hofmann, J. Hornegger and G. Wellein: Pushing the limits for medical image
reconstruction on recent standard multicore processors. International Journal of High Performance
Computing Applications, (published online before print).

DOI: 10.1177/1094342012442424

G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking for stencil
computations by multicore-aware wavefront parallelization. Proc. COMPSAC 2009. DOI:
10.1109/COMPSAC.2009.82

M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel temporal
blocking of stencil codes on multicore processors and clusters. Parallel Processing Letters 20 (4), 359-
376 (2010).

DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

(c) RRZE 2018 Node-Level Performance Engineering 195

http://dx.doi.org/10.1007/978-3-642-36949-0_50
http://arxiv.org/abs/1206.3738
http://dx.doi.org/10.1016/j.camwa.2012.05.002
http://arxiv.org/abs/1111.0922
http://dx.doi.org/10.1109/IPDPSW.2012.211
http://dx.doi.org/10.1177/1094342012442424
http://dx.doi.org/10.1109/COMPSAC.2009.82
http://dx.doi.org/10.1142/S0129626410000296
http://arxiv.org/abs/1006.3148

References [m'—

J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool suite for x86
multicore environments. Proc. PSTI2010, the First International Workshop on Parallel Software Tools
and Tool Infrastructures, San Diego CA, September 13, 2010. DOI: 10.1109/ICPPW.2010.38. Preprint:
arxXiv:1004.4431

G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication
with explicit communication overlap on current multicore-based systems. Parallel Processing Letters
21(3), 339-358 (2011).

DOI: 10.1142/S0129626411000254

J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for iterative
stencil computations. Journal of Computational Science 2 (2), 130-137 (2011). DOI
10.1016/j.jocs.2011.01.010

K. Iglberger, G. Hager, J. Treibig, and U. Rude: Expression Templates Revisited: A Performance
Analysis of Current ET Methodologies. SIAM Journal on Scientific Computing 34(2), C42-C69
(2012). DOI: 10.1137/110830125, Preprint: arXiv:1104.1729

K. Iglberger, G. Hager, J. Treibig, and U. Rude: High Performance Smart Expression Template Math
Libraries. 2nd International Workshop on New Algorithms and Programming Models for the Manycore
Era (APMM 2012) at HPCS 2012, July 2-6, 2012, Madrid, Spain. DOI: 10.1109/HPCSim.2012.6266939

J. Habich, T. Zeiser, G. Hager and G. Wellein: Performance analysis and optimization strategies for a
D3Q19 Lattice Boltzmann Kernel on nVIDIA GPUs using CUDA. Advances in Engineering Software
and Computers & Structures 42 (5), 266—272 (2011). DOI: 10.1016/j.advengsoft.2010.10.007

J. Treibig, G. Hager and G. Wellein: Multicore architectures: Complexities of performance prediction
for Bandwidth-Limited Loop Kernels on Multi-Core Architectures.
DOI: 10.1007/978-3-642-13872-0_1, Preprint: arXiv:0910.4865.

(c) RRZE 2018 Node-Level Performance Engineering 196

http://www.psti-workshop.org/
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
http://arxiv.org/abs/1004.4431
http://dx.doi.org/10.1142/S0129626411000254
http://dx.doi.org/10.1016/j.jocs.2011.01.010
http://blogs.fau.de/hager/files/2012/05/ET-SISC-Iglberger2012.pdf
http://dx.doi.org/10.1137/110830125
http://arxiv.org/abs/1104.1729
http://hpcs2012.cisedu.info/2-conference/workshops/workshop-07-apmm
http://hpcs2012.cisedu.info/
http://dx.doi.org/10.1109/HPCSim.2012.6266939
http://dx.doi.org/10.1016/j.advengsoft.2010.10.007
http://dx.doi.org/10.1007/978-3-642-13872-0_1
http://arxiv.org/abs/0910.4865

