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Agenda

▪ Preliminaries

▪ Introduction to multicore architecture

▪ Threads, cores, SIMD, caches, chips, sockets, ccNUMA

▪ Multicore tools (part I)

▪ Microbenchmarking for architectural exploration

▪ Streaming benchmarks

▪ Hardware bottlenecks

▪ Node-level performance modeling (part I)

▪ The Roofline Model 

▪ Lunch break

▪ Multicore tools (part II)

▪ Node-level performance modeling (part II)

▪ Case studies: Jacobi solver, sparse MVM, tall & skinny MM

▪ Optimal resource utilization

▪ SIMD parallelism

▪ ccNUMA

▪ OpenMP synchronization and multicores
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Prelude:

Scalability 4 the win!



Scalability Myth: Code scalability is the key issue

(c) RRZE 2019 Node-Level Performance Engineering

Prepared for 
the highly 
parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only the compile 
options makes this code 
scalable on an 8-core chip

–O3 -xAVX
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Scalability Myth: Code scalability is the key issue
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!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency 
is key issue!

Upper limit from simple 
performance model:
35 GB/s & 24 Byte/update
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Questions to ask in high performance computing

▪ Do I understand the performance behavior of my code?

▪ Does the performance match a model I have made?

▪ What is the optimal performance for my code on a given machine?

▪ High Performance Computing == Computing at the bottleneck

▪ Can I change my code so that the “optimal performance” gets 

higher?

▪ Circumventing/ameliorating the impact of the bottleneck

▪ My model  does not work – what’s wrong?

▪ This is the good case, because you learn something

▪ Performance monitoring / microbenchmarking may help clear up the 

situation
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Introduction:

Modern node architecture

A glance at basic core features:

pipelining, superscalarity, SMT, SIMD

Caches and data transfers through the memory hierarchy

Accelerators

Bottlenecks & hardware-software interaction



Multi-core today: Intel Xeon Skylake SP (2017)
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▪ Xeon “Skylake SP” (Platinum/Gold/Silver/Bronze):

Up to 28 cores running at 2+ GHz (+ “Turbo Mode”: 3.8+ GHz) 

▪ Mesh interconnect 

▪ Reincarnated as “Cascade Lake” in 2018

▪ Simultaneous Multithreading

→ reports as 56-way chip

▪ 8 Billion Transistors / 14 nm

▪ Die size: ~500 mm2

2-socket server

. . . . . .

Optional: “Sub-

NUMA Clustering” 

(SNC) mode

2015: Broadwell architecture
▪ Ring instead of mesh 

interconnect

▪ Cluster on Die (analogous to 

SNC)

▪ Up to 24 cores

W
ik
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h

ip
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General-purpose cache based microprocessor core

▪ Implements “Stored 

Program Computer” 

concept (Turing 1936)

▪ Similar designs on all 

modern systems

▪ (Still) multiple potential 

bottlenecks

▪ The clock cycle is the 

“heartbeat” of the core
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Stored-program computer

Modern CPU core
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Pipelining of arithmetic/functional units 

▪ Idea:

▪ Split complex instruction into several simple / fast steps (stages)

▪ Each step takes the same time, e.g., one cycle

▪ Execute different steps on different instructions at the same time (in 
parallel)

▪ Allows for shorter cycle times (simpler logic circuits), e.g.: 

▪ floating point multiplication takes 5 cycles, but 

▪ processor can work on 5 different multiplications simultaneously

▪ one result at each cycle after the pipeline is full

▪ Drawback: 

▪ Pipeline must be filled – sufficient # of independent instructions required

▪ Requires complex instruction scheduling by compiler/hardware

▪ software-pipelining / out-of-order execution

▪ Pipelining is widely used in modern computer architectures
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5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!

(c) RRZE 2019 Node-Level Performance Engineering 12



▪ Multiple units enable use of Instruction Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

▪ Instructions from different loop iterations retired at the same time

▪ Issuing m concurrent instructions per cycle: m-way superscalar

▪ Modern processors are 4- to 6-way superscalar & 

can perform 2 floating-point instructions per cycle

Superscalar Processors – Instruction Level Parallelism
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t
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LOAD

STORE

MULT

ADD

Example:
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Core details: Simultaneous multi-threading (SMT)

“logical” cores → multiple threads/processes run concurrently
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SMT principle (2-way example):
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Core details: SIMD processing

▪ Single Instruction Multiple Data (SIMD) operations allow the concurrent 

execution of the same operation on “wide” registers

▪ x86 SIMD instruction sets:

▪ SSE: register width = 128 Bit → 2 double precision floating point operands 

▪ AVX: register width = 256 Bit → 4 double precision floating point operands

▪ AXV512: you get it.

▪ Adding two registers holding double precision floating point operands 
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There is no single driving force for single core performance!

Maximum floating point (FP) performance:

𝑃𝑐𝑜𝑟𝑒 = 𝑛𝑠𝑢𝑝𝑒𝑟
𝐹𝑃 ∙ 𝑛𝐹𝑀𝐴 ∙ 𝑛𝑆𝐼𝑀𝐷 ∙ 𝑓
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Super-
scalarity

FMA
factor

SIMD
factor

Clock
Speed

Typical
representatives

𝒏𝒔𝒖𝒑𝒆𝒓
𝑭𝑷

[inst./cy]
𝒏𝑭𝑴𝑨

𝒏𝑺𝑰𝑴𝑫
[ops/inst.]

Code
𝒇

[Gcy/s]
𝑷𝒄𝒐𝒓𝒆
[GF/s]

Nehalem 2 1 2 Q1/2009 X5570 2.93 11.7

Westmere 2 1 2 Q1/2010 X5650 2.66 10.6

Sandy Bridge 2 1 4 Q1/2012 E5-2680 2.7 21.6

Ivy Bridge 2 1 4 Q3/2013 E5-2660 v2 2.2 17.6

Haswell 2 2 4 Q3/2014 E5-2695 v3 2.3 36.8

Broadwell 2 2 4 Q1/2016 E5-2699 v4 2.2 35.2

Skylake 2 2 8 Q3/2017 Gold 6148 2.4 76.8

AMD Zen 2 2 2 Q1/2017 Epyc 7451 2.3 18.4

IBM POWER8 2 2 2 Q2/2014 S822LC 2.93 23.4 18
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A “simple” example: The sum reduction

s = 0.0

do i = 1,N

s = s + a(i)

enddo

▪ Loop-carried dependency on summation variable

▪ Execution stalls at every ADD until previous ADD is complete

→No pipelining?

→No SIMD?

(c) RRZE 2019 Node-Level Performance Engineering

…In single precision on an AVX-

capable core (ADD latency = 3 cy)

How fast can this loop possibly run

with data in the L1 cache?
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Applicable peak for the sum reduction (I)

Plain scalar code, no SIMD

LOAD r1.0  0

i  1

loop: 

LOAD r2.0  a(i)

ADD r1.0  r1.0 + r2.0

++i →? loop

result  r1.0

(c) RRZE 2019 Node-Level Performance Engineering

ADD pipes utilization:

→ 1/24 of ADD peak

s
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do i = 1,N

s = s + a(i)

enddo
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Applicable peak for the sum reduction (II)

Scalar code, 3-way “modulo variable expansion”

LOAD r1.0  0

LOAD r2.0  0

LOAD r3.0  0

i  1

loop: 

LOAD r4.0  a(i)     

LOAD r5.0  a(i+1)   

LOAD r6.0  a(i+2)   

ADD r1.0  r1.0 + r4.0  # scalar ADD

ADD r2.0  r2.0 + r5.0  # scalar ADD

ADD r3.0  r3.0 + r6.0  # scalar ADD

i+=3 →? loop

result  r1.0+r2.0+r3.0
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→ 1/8 of ADD peak

s1 s2 s3

do i = 1,N,3

s1 = s1 + a(i+0)

s2 = s2 + a(i+1)

s3 = s3 + a(i+2)

enddo

s = s + s1+s2+s3
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Applicable peak for the sum reduction (III)

SIMD-vectorization (8-way MVE) x 

pipelining (3-way MVE)

LOAD [r1.0,…,r1.7]  [0,…,0]

LOAD [r2.0,…,r2.7]  [0,…,0]

LOAD [r3.0,…,r3.7]  [0,…,0]

i  1

loop: 

LOAD [r4.0,…,r4.7]  [a(i),…,a(i+7)]     # SIMD LOAD

LOAD [r5.0,…,r5.7]  [a(i+8),…,a(i+15)]  # SIMD

LOAD [r6.0,…,r6.7]  [a(i+16),…,a(i+23)] # SIMD

ADD r1  r1 + r4  # SIMD ADD

ADD r2  r2 + r5  # SIMD ADD

ADD r3  r3 + r6  # SIMD ADD

i+=24 →? loop

result  r1.0+r1.1+...+r3.6+r3.7
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→
A
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D
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s11 s21 s31

s12 s22 s32

s13 s23 s33

s14 s24 s34

s15 s25 s35

s16 s26 s36

s17 s27 s37

s10 s20 s30

do i = 1,N,24

s10=s10+a(i+0); s20=s20+a(i+8) ; s30=s30+a(i+16)

s11=s11+a(i+1); s21=s21+a(i+9) ; s31=s31+a(i+17)

s12=s12+a(i+2); s22=s22+a(i+10); s32=s32+a(i+18)

s13=s13+a(i+3); s23=s23+a(i+11); s33=s33+a(i+19)

s14=s14+a(i+4); s24=s24+a(i+12); s34=s34+a(i+20)

s15=s15+a(i+5); s25=s25+a(i+13); s35=s35+a(i+21)

s16=s16+a(i+6); s26=s26+a(i+14); s36=s36+a(i+22)

s17=s17+a(i+7); s27=s27+a(i+15); s37=s37+a(i+23)

enddo

s = s + s10+s11+...+s37



Registers and caches: Data transfers in a memory hierarchy

How does data travel from memory to the CPU and back?

▪ Remember: Caches are organized

in cache lines (e.g., 64 bytes)

▪ Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

▪ MISS: Load or store instruction does

not find the data in a cache level

→ CL transfer required

▪ Example: Array copy A(:)=C(:)
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CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1)MISS

write
allocate

evict
(delayed)

3 CL 

transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

C(:) A(:)
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Putting the cores & caches together
AMD Epyc 7451 24-Core Processor («Naples»)

(c) RRZE 2019 Node-Level Performance Engineering

S
o

c
k
e

t 
0

S
o

c
k
e

t 
1

▪ 24 cores per socket

▪ 4 chips w/ 6 cores each (“Zeppelin” die)

▪ 3 cores share 8MB L3 (“Core Complex”, “CCX”)

▪ DDR4-2666 memory interface with 2 channels 

per chip

▪ MemBW per node:

16 ch x 8 byte x 2.666 GHz = 341 GB/s

▪ Two-way SMT

▪ Two 256-bit (actually 4 128-bit) SIMD FP units

▪ AVX2, 8 flops/cycle

▪ 32 KiB L1 data cache per core

▪ 512 KiB L2 cache per core

▪ 2 x 8 MiB L3 cache per chip

▪ 64 MiB L3 cache per socket

▪ ccNUMA memory architecture

▪ Infinity fabric between CCX’s and between chips

Compute node
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Interlude:

A glance at current accelerator technology

Nvidia “Volta” V100 

vs. 

Intel Skylake “Platinum”



Nvidia V100 “Volta” specs
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Architecture

▪ 21.1 B Transistors

▪ ~ 1.4 GHz clock speed

▪ ~ 80 “SM” units

▪ 64 SP “cores” each (FMA)

▪ 32 DP “cores” each (FMA)

▪ 8 “Tensor Cores” each

▪ 2:1 SP:DP 

performance

▪ ~7 TFlop/s DP peak

▪ 6 MiB L2 Cache

▪ 4096-bit HBM2

▪ MemBW ~ 900 GB/s

(theoretical)

▪ MemBW ~ 830 GB/s

(measured)

© Nvidia

𝑃𝑝𝑒𝑎𝑘
𝐷𝑃 = 𝑛𝑆𝑀 ⋅ 𝑛𝑐𝑜𝑟𝑒 ⋅ 𝑛𝐹𝑃 ∙ 𝑓

# SMs
# CUDA 

cores/SM
# FP

ops/cy

𝑛𝑆𝑀 = 80
𝑛𝑐𝑜𝑟𝑒 = 32

𝑛𝐹𝑃 = 2flopscy

𝑓 = 1.4Gcys
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Trading single thread performance for parallelism:

GPGPUs vs. CPUs

GPU vs. CPU 

light speed estimate

(per device)

MemBW ~ 8-10x

Peak ~ 5-10x

2x Intel 
Xeon Platinum 8160

NVidia Tesla V100 “Volta”

Cores@Clock 2 x 24 @ ≥2.1 GHz 80 SMs @ ~1.4 GHz

SP Performance/core ≥ 134 GFlop/s ~179 GFlop/s

Threads@STREAM ~20 > 20000

SP peak ≥ 6 TFlop/s ~14 TFlop/s

Stream BW (meas.) 2 x 105 GB/s 830 GB/s

Transistors / TDP ~2x8 Billion / 2x150 W 21 Billion/250 W

(c) RRZE 2019 Node-Level Performance Engineering 30



Node topology and 

programming models
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Parallelism in a modern compute node

▪ Parallel and shared resources (potential bottlenecks!) within a shared-

memory node

GPU #1

GPU #2
PCIe link

Parallel resources:

▪ Execution/SIMD units

▪ Cores

▪ Inner cache levels

▪ Sockets / ccNUMA domains

▪ Multiple accelerators

Shared resources:

▪ Outer cache level per socket

▪ Memory bus per socket

▪ Intersocket link

▪ PCIe bus(es)

▪ Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?
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Parallel programming models:
Pure MPI

▪ Machine structure is invisible to user:

▪ → Very simple programming model

▪ → MPI “knows what to do”!?

▪ Performance issues

▪ Intranode vs. internode MPI

▪ Node/system topology
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Parallel programming models:
Pure threading on the node

▪ Machine structure is invisible to user

▪ → Very simple programming model

▪ Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

▪ Some support since OpenMP 4.0

▪ Performance issues

▪ Synchronization overhead

▪ Memory access

▪ Node topology



Conclusions about architecture

▪ Modern computer architecture has a rich “topology”

▪ Node-level hardware parallelism takes many forms

▪ Sockets/devices – CPU: 1-8, GPGPU: 1-6

▪ Cores – moderate (CPU: 4-64) to massive (GPGPU: 10’s-100’s)

▪ SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s) 

▪ Superscalarity (CPU: 2-6)

▪ Exploiting performance: parallelism + bottleneck awareness

▪ “High Performance Computing” == computing at a bottleneck

▪ Performance of programming models is sensitive to architecture

▪ Topology/affinity influences overheads

▪ Standards do not contain (many) topology-aware features

▪ Slowly improving, though (OpenMP 4.0, MPI 3.0)

▪ Apart from overheads, performance features are largely independent of the 
programming model
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Multicore Performance and Tools

Part 1: Topology and affinity
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Tools for Node-level Performance Engineering

▪ Gather Node Information                                                                  

hwloc, likwid-topology, likwid-powermeter

▪ Affinity control and data placement                                                

OpenMP and MPI runtime environments, hwloc, numactl, likwid-pin

▪ Runtime Profiling                                                                    

Compilers, gprof, HPC Toolkit, Intel Amplifier,…

▪ Performance Profilers                                                                       

Intel VtuneTM, likwid-perfctr, PAPI based tools, HPC Toolkit, Linux 

perf, …

▪ Microbenchmarking

STREAM, likwid-bench, lmbench

(c) RRZE 2019 Node-Level Performance Engineering



LIKWID performance tools

LIKWID tool suite:

Like

I

Knew

What

I’m

Doing

Open source tool collection 

(developed at RRZE):

https://github.com/RRZE-HPC/likwid

J. Treibig, G. Hager, G. Wellein: LIKWID: A 
lightweight performance-oriented tool suite for x86 
multicore environments. PSTI2010, Sep 13-16, 2010, 
San Diego, CA            http://arxiv.org/abs/1004.4431
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Output of  likwid-topology –g
on one node of Intel Haswell-EP

--------------------------------------------------------------------------------

CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz

CPU type: Intel Xeon Haswell EN/EP/EX processor

CPU stepping: 2

********************************************************************************

Hardware Thread Topology

********************************************************************************

Sockets: 2

Cores per socket: 14

Threads per core: 2

--------------------------------------------------------------------------------

HWThread Thread Core Socket Available

0 0 0 0 *

1 0 1 0 *

…
43              1 1 1 *

44              1 2 1 *

--------------------------------------------------------------------------------

Socket 0: ( 0 28 1 29 2 30 3 31 4 32 5 33 6 34 7 35 8 36 9 37 10 38 11 39 12 40 13 41 )

Socket 1: ( 14 42 15 43 16 44 17 45 18 46 19 47 20 48 21 49 22 50 23 51 24 52 25 53 26 54 27 55 )

--------------------------------------------------------------------------------

********************************************************************************

Cache Topology

********************************************************************************

Level: 1

Size: 32 kB

Cache groups: ( 0 28 ) ( 1 29 ) ( 2 30 ) ( 3 31 ) ( 4 32 ) ( 5 33 ) ( 6 34 ) ( 7 35 ) ( 8 36 ) ( 9 37 ) ( 10 38 ) ( 11 39 ) ( 12 40 ) ( 13 41

) ( 14 42 ) ( 15 43 ) ( 16 44 ) ( 17 45 ) ( 18 46 ) ( 19 47 ) ( 20 48 ) ( 21 49 ) ( 22 50 ) ( 23 51 ) ( 24 52 ) ( 25 53 ) ( 26 54 ) ( 27 55 )

--------------------------------------------------------------------------------

Level: 2

Size: 256 kB

Cache groups: ( 0 28 ) ( 1 29 ) ( 2 30 ) ( 3 31 ) ( 4 32 ) ( 5 33 ) ( 6 34 ) ( 7 35 ) ( 8 36 ) ( 9 37 ) ( 10 38 ) ( 11 39 ) ( 12 40 ) ( 13 41

) ( 14 42 ) ( 15 43 ) ( 16 44 ) ( 17 45 ) ( 18 46 ) ( 19 47 ) ( 20 48 ) ( 21 49 ) ( 22 50 ) ( 23 51 ) ( 24 52 ) ( 25 53 ) ( 26 54 ) ( 27 55 )

--------------------------------------------------------------------------------

Level: 3

Size: 17 MB

Cache groups: ( 0 28 1 29 2 30 3 31 4 32 5 33 6 34 ) ( 7 35 8 36 9 37 10 38 11 39 12 40 13 41 ) ( 14 42 15 43 16 44 17 45 18 46 19 47 20 48 )

( 21 49 22 50 23 51 24 52 25 53 26 54 27 55 )

--------------------------------------------------------------------------------

All physical 

processor IDs



43

Output of likwid-topology continued
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********************************************************************************

NUMA Topology

********************************************************************************

NUMA domains: 4

--------------------------------------------------------------------------------

Domain: 0

Processors: ( 0 28 1 29 2 30 3 31 4 32 5 33 6 34 )

Distances: 10 21 31 31

Free memory: 13292.9 MB

Total memory: 15941.7 MB

--------------------------------------------------------------------------------

Domain: 1

Processors: ( 7 35 8 36 9 37 10 38 11 39 12 40 13 41 )

Distances: 21 10 31 31

Free memory: 13514 MB

Total memory: 16126.4 MB

--------------------------------------------------------------------------------

Domain: 2

Processors: ( 14 42 15 43 16 44 17 45 18 46 19 47 20 48 )

Distances: 31 31 10 21

Free memory: 15025.6 MB

Total memory: 16126.4 MB

--------------------------------------------------------------------------------

Domain: 3

Processors: ( 21 49 22 50 23 51 24 52 25 53 26 54 27 55 )

Distances: 31 31 21 10

Free memory: 15488.9 MB

Total memory: 16126 MB

--------------------------------------------------------------------------------
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Output of likwid-topology continued
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********************************************************************************

Graphical Topology

********************************************************************************

Socket 0:

+-----------------------------------------------------------------------------------------------------------------------------------------------------------+

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  0 28  | |  1 29  | |  2 30  | |  3 31  | |  4 32  | |  5 33  | |  6 34  | |  7 35  | |  8 36  | |  9 37  | | 10 38  | | 11 39  | | 12 40  | | 13 41  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | | 32kB  | |  32kB  | |  32kB  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | | 256kB | |  256kB | |  256kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |

| |                                   17MB                                   | |                                   17MB      | |

| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |

+-----------------------------------------------------------------------------------------------------------------------------------------------------------+

Socket 1:

+-----------------------------------------------------------------------------------------------------------------------------------------------------------+

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 14 42  | | 15 43  | | 16 44  | | 17 45  | | 18 46  | | 19 47  | | 20 48  | | 21 49  | | 22 50  | | 23 51  | | 24 52  | | 25 53  | | 26 54  | | 27 55  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | | 32kB  | |  32kB  | |  32kB  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | | 256kB | |  256kB | |  256kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |

| |                                   17MB                                   | |                                   17MB      | |

| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |

+-----------------------------------------------------------------------------------------------------------------------------------------------------------+

Cluster on die mode 

and SMT enabled!



Enforcing thread/process-core affinity

likwid-pin

OpenMP affinity mechanisms
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Example: OpenMP STREAM benchmark on 16-core system:

Anarchy vs. thread pinning

No pinning

Pinning (physical cores first, 

first socket first)

There are several reasons for caring 

about affinity:

▪ Eliminating performance variation

▪ Making use of architectural features

▪ Avoiding resource contention
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Likwid-pin
Overview

▪ Pins processes and threads to specific cores without touching code

▪ Directly supports pthreads, gcc OpenMP, Intel OpenMP

▪ Based on combination of wrapper tool together with overloaded pthread library →

binary must be dynamically linked!

▪ Can also be used as a superior replacement for taskset

▪ Supports logical core numbering within a node

▪ Simple usage with physical (kernel) core IDs:

▪ likwid-pin -c 0-3,4,6 ./myApp parameters 

▪ OMP_NUM_THREADS=4 likwid-pin -c 0-9 ./myApp parameters

▪ Simple usage with logical core IDs (“thread groups”):

▪ likwid-pin -c S0:0-7 ./myApp parameters 

▪ likwid-pin –c C1:0-2 ./myApp parameters
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Likwid
Currently available thread domains

Possible unit prefixes

N node

S socket

M NUMA domain

C outer-level cache group

(c) RRZE 2019 Node-Level Performance Engineering

Chipset

Memory

Default if -c is not 

specified!
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Likwid-pin
Example: Intel OpenMP

▪ Running the STREAM benchmark with likwid-pin:

$ likwid-pin -c S0:0-3 ./stream

----------------------------------------------

Double precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word

----------------------------------------------

Array size =   20000000

Offset     =         32

The total memory requirement is  457 MB

You are running each test  10 times

--

The *best* time for each test is used

*EXCLUDING* the first and last iterations

[pthread wrapper] MAIN -> 0

[pthread wrapper] PIN_MASK: 0->1  1->2  2->3  

[pthread wrapper] SKIP MASK: 0x1

threadid 140668624234240 -> SKIP 

threadid 140668598843264 -> core 1 - OK

threadid 140668594644992 -> core 2 - OK

threadid 140668590446720 -> core 3 - OK

[... rest of STREAM output omitted ...]

Skip shepherd 

thread if necessary

Main PID always 

pinned

Pin all spawned 

threads in turn
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OpenMP affinity: OMP_PLACES

Processor: smallest entity able to run a thread or task (hardware thread)

Place: one or more processors → thread pinning is done place by place

Free migration of the threads on a place between the processors of that place.

Or use explicit numbering, e.g. 8 places, each consisting of 4 processors:

▪ OMP_PLACES="{0,1,2,3},{4,5,6,7},{8,9,10,11}, … {28,29,30,31}"

▪ OMP_PLACES="{0:4},{4:4},{8:4}, … {28:4}"

▪ OMP_PLACES="{0:4}:8:4"

(c) RRZE 2019 Node-Level Performance Engineering

OMP_PLACES Place ==

threads Hardware thread (hyper-thread)

cores All HW threads of a single core

sockets All HW threads of a socket

abstract_name(num_places) Restrict # of places available

abstract name

<lower-bound>:<number of entries>[:<stride>]

Caveat: Actual behavior is implementation defined!
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OMP_PROC_BIND variable / proc_bind() clause

▪ Determines how places are used for pinning:

▪ If there are more threads than places, consecutive threads are put into 

individual places (“balanced”)

OMP_PROC_BIND Meaning

FALSE Affinity disabled

TRUE Affinity enabled, implementation defined

strategy

CLOSE Threads bind to consecutive places

SPREAD Threads are evenly scattered among places

MASTER Threads bind to the same place as the 

master thread that was running before the 

parallel region was entered

(c) RRZE 2019 Node-Level Performance Engineering
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Some simple OMP_PLACES examples

▪ Intel Xeon w/ SMT, 2x10 cores, 1 thread per physical core, fill 1 socket
OMP_NUM_THREADS=10

OMP_PLACES=cores

OMP_PROC_BIND=close

▪ Intel Xeon Phi with 72 cores, 

32 cores to be used, 2 threads per physical core
OMP_NUM_THREADS=64 

OMP_PLACES=cores(32)

OMP_PROC_BIND=close    # spread will also do

▪ Intel Xeon, 2 sockets, 4 threads per socket (no binding within socket!)
OMP_NUM_THREADS=8

OMP_PLACES=sockets

OMP_PROC_BIND=close    # spread will also do

▪ Intel Xeon, 2 sockets, 4 threads per socket, binding to cores 
OMP_NUM_THREADS=8

OMP_PLACES=cores

OMP_PROC_BIND=spread

Always prefer abstract places 

instead of HW thread IDs! 

(c) RRZE 2019 Node-Level Performance Engineering
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likwid-mpirun

MPI  startup and Hybrid pinning

▪ How do you manage affinity with MPI or hybrid MPI/threading?

▪ In the long run a unified standard is needed

▪ Till then, likwid-mpirun provides a portable/flexible solution

▪ The examples here are for Intel MPI/OpenMP programs, but are also 

applicable to other threading models

Pure MPI:

likwid-mpirun -np 16 -nperdomain S:2 ./a.out

Hybrid:

likwid-mpirun -np 16 -pin S0:0,1_S1:0,1 ./a.out

(c) RRZE 2019 Node-Level Performance Engineering
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likwid-mpirun

1 MPI process per node

likwid-mpirun –np 2 -pin N:0-11  ./a.out

(c) RRZE 2019

Intel MPI+compiler:
OMP_NUM_THREADS=12 mpirun –ppn 1 –np 2 –env KMP_AFFINITY scatter ./a.out

Node-Level Performance Engineering
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likwid-mpirun

1 MPI process per socket

likwid-mpirun –np 4 –pin S0:0-5_S1:0-5 ./a.out

(c) RRZE 2019

Intel MPI+compiler: 
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 \

–env I_MPI_PIN_DOMAIN socket –env KMP_AFFINITY scatter ./a.out

Node-Level Performance Engineering



Microbenchmarking for 

architectural exploration (and more)

Probing of the memory hierarchy

Saturation effects in cache and memory
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Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

(c) RRZE 2019 Node-Level Performance Engineering

HPC plays here

Avoiding slow data 

paths is the key to 

most performance 

optimizations!

But how “slow” are 

these data paths 

anyway?
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The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

▪ Report performance for different N, choose NITER so that accurate time 

measurement is possible

▪ This kernel is limited by data transfer performance for all memory levels on all 

architectures, ever!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

stime = timestamp()

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

etime = timestamp()

Mflops = (2.d0*NITER)*N / (etime-stime) / 1.0e6

Prevents smarty-pants 

compilers from doing 

“clever” stuff
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A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

(c) RRZE 2019 Node-Level Performance Engineering

L1D cache (32k)

L2 cache (256k)

L3 cache (20M)

Memory

4 W / iteration 

→ 128 GB/s

5 W / it.

→ 18 GB/s

(incl. write 

allocate)

Are the

performance

levels

plausible?

What about

multiple cores? 

Do the

bandwidths

scale?

Pattern!

Ineffective

instructions
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A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz):

Observations and further questions

(c) RRZE 2019 Node-Level Performance Engineering

2
.6

6
x

 S
IM

D
 i
m

p
a

c
t?

Data far away→smaller SIMD impact? 

Theoretical limit?

Theoretical limit?

Theoretical limits?

See later for 

answers!
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The throughput-parallel vector triad benchmark

Every core runs its own, independent triad benchmark

→ pure hardware probing, no impact from OpenMP overhead

(c) RRZE 2019 Node-Level Performance Engineering

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP SINGLE

stime = timestamp()

!$OMP END SINGLE

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

<<obscure dummy call>>

enddo

!$OMP SINGLE

etime = timestamp()

!$OMP END SINGLE

!$OMP END PARALLEL

Mflops = (2.d0*NITER)*N*num_threads / (etime-stime) / 1.0e6
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Throughput vector triad on Sandy Bridge socket (3 GHz)

(c) RRZE 2019 Node-Level Performance Engineering

Saturation effect

in memory

Scalable BW in 

L1, L2, L3 cache
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Attainable memory bandwidth: Comparing architectures

(c) RRZE 2019 Node-Level Performance Engineering

ECC=on

Cavium ThunderX2 (ARM)
DDR4-2400 memory NVIDIA P100 (Pascal)

Intel Broadwell (22 cores)

CoD enabled

AMD Naples (24 cores)

Single core 

does not 

saturate BW

BW saturation 

in NUMA 

domain

Pattern!

Bandwidth

saturation
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Conclusions from the microbenchmarks

▪ Affinity matters!

▪ Almost all performance properties depend on the position of

▪ Data

▪ Threads/processes

▪ Consequences

▪ Know where your threads are running

▪ Know where your data is

▪ Bandwidth bottlenecks are ubiquitous

(c) RRZE 2019 Node-Level Performance Engineering



“Simple” performance modeling:

The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

Example: array summation

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks. 

Parallel Computing 10, 277-286 (1989).  DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed   Memory Parallel Computers. 

Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. 

UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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A simple performance model for loops

Simplistic view of the hardware:

(c) RRZE 2019 Node-Level Performance Engineering

! may be multiple levels

do i = 1,<sufficient> 

<complicated stuff doing

N flops causing

V bytes of data transfer>

enddo

Execution units

max. performance

𝑷𝒑𝒆𝒂𝒌

Data source/sink

Data path, 

bandwidth 𝑏𝑆
→ Unit: byte/s

Simplistic view of the software:

Computational intensity 𝐼 =
𝑁

𝑉

→ Unit: flop/byte
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A simple performance model for loops

How fast can tasks be processed? 𝑷 [flop/s]

The bottleneck is either

▪ The execution of work: 𝑃peak [flop/s]

▪ The data path: 𝐼 ∙ 𝑏𝑆 [flop/byte x byte/s]

This is the “Naïve Roofline Model”

▪ High intensity: P limited by execution

▪ Low intensity: P limited by data transfer

▪ “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆: 

Best use of resources

▪ Roofline is an “optimistic” model

(“light speed”)

(c) RRZE 2019 Node-Level Performance Engineering

𝑃 = min(𝑃peak, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a

n
c
e

Ppeak
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Apply the naive Roofline model in practice

▪ Machine parameter #1: Peak performance:         𝑃𝑝𝑒𝑎𝑘
𝐹

𝑠

▪ Machine parameter #2: Memory bandwidth:         𝑏𝑆
𝐵

𝑠

▪ Code characteristic:  Computational Intensity:  𝐼
𝐹

𝐵

The Roofline Model in computing – Basics 

Machine properties:

𝑃𝑝𝑒𝑎𝑘 = 4
GF

s

𝑏𝑆 = 10
GB

s

Application property: I

double s=0, a[];

for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

𝐼 =
2 𝐹

8 𝐵
= 0.25 Τ𝐹 𝐵

(c) RRZE 2019 Node-Level Performance Engineering

𝑃 = 2.5 GF/s
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The Roofline Model – Basics 

Compare capabilities of different machines

▪ RLM always provides upper bound – but is it realistic?

▪ If code is not able to reach this limit (e.g. contains add operations only) 

machine parameter need to redefined (e.g., 𝑃𝑝𝑒𝑎𝑘 → 𝑃𝑝𝑒𝑎𝑘/2)

(c) RRZE 2019 Node-Level Performance Engineering

Assuming full

DP SIMD peak
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The Roofline Model

(a slightly refined version for better in-core prediction)

(c) RRZE 2019 Node-Level Performance Engineering

1. Pmax = Applicable peak performance of a loop, assuming that data 

comes from the level 1 cache (this is not necessarily Ppeak)

→ e.g.,  Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the 

slowest data path utilized (code balance BC = I -1)

→ e.g., I = 0.167 Flop/Byte  → BC = 6 Byte/Flop

3. bS = Applicable peak bandwidth of the slowest data path utilized

→ e.g., bS = 56 GByte/s

Expected performance:

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆
𝐵𝐶

[Byte/s]

[Byte/Flop]
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Refined Roofline model: graphical representation

Multiple ceilings may apply

▪ Different Pmax

→ different flat ceilings

▪ Different bandwidths / data

paths

→ different inclined ceilings

(c) RRZE 2019 Node-Level Performance Engineering



86

Estimating per-core  Pmax on a given architecture

Haswell port scheduler model:

Port 0 Port 1 Port 5Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 μops

32b 32b 32b

AGU

Haswell

FMUL

ALU

JUMP

(c) RRZE 2019 Node-Level Performance Engineering

Instruction reorder

buffer
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Example: Estimate Pmax of vector triad on Haswell

double  *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];

}

Minimum number of cycles to process one AVX-vectorized iteration

(one core)?

→ Equivalent to 4 scalar iterations

Cycle 1:  LOAD + LOAD + STORE

Cycle 2:  LOAD + LOAD + FMA + FMA

Cycle 3:  LOAD + LOAD + STORE            Answer:  1.5 cycles

(c) RRZE 2019 Node-Level Performance Engineering
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Example: Estimate Pmax of vector triad on Haswell (2.3 GHz)

double  *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];

}

What is the performance in GFlops/s per core and the bandwidth in 

GBytes/s?

One AVX iteration (1.5 cycles) does 4 x 2 = 8 flops:

2.3 ∙ 109 cy/s

1.5 cy
∙ 4 updates ∙

2 flops

update
= 𝟏𝟐. 𝟐𝟕

Gflops

s

6.13 ∙ 109
updates

s
∙ 32

bytes

update
= 196

Gbyte

s

(c) RRZE 2019 Node-Level Performance Engineering
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Pmax + bandwidth limitations: The vector triad

Vector triad A(:)=B(:)+C(:)*D(:) on a 2.3 GHz 14-core Haswell chip 

Consider full chip (14 cores):

Memory bandwidth: bS = 50 GB/s

Code balance (incl. write allocate):  

Bc = (4+1) Words / 2 Flops = 20 B/F → I = 0.05 F/B

→ I ∙ bS = 2.5 GF/s (0.5% of peak performance)

Ppeak / core = 36.8 Gflop/s ((8+8) Flops/cy x 2.3 GHz)

Pmax / core = 12.27 Gflop/s (see prev. slide)

→ Pmax = 14 * 12.27 Gflop/s =172 Gflop/s (33% peak)

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 172,2.5 ΤGFlop s = 2.5 ΤGFlop s

(c) RRZE 2019 Node-Level Performance Engineering
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A not so simple Roofline example

Example:     do i=1,N; s=s+a(i); enddo

in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

(c) RRZE 2019 Node-Level Performance Engineering

ADD peak  

(best possible 

code)

no SIMD

3-cycle latency 

per ADD if not 

unrolled

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

See 

architecture

intro

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak  

(ADD+MULT)

Out of reach for this 

code

P 
(better loop code)
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Input to the roofline model

… on the example of       do i=1,N; s=s+a(i); enddo

in single precision

(c) RRZE 2019 Node-Level Performance Engineering

analysis

Code analysis:

1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)

Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s
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Prerequisites for the Roofline Model

(c) RRZE 2019 Node-Level Performance Engineering

▪ The roofline formalism is based on some (crucial) prerequisites:

▪ There is a clear concept of “work” vs. “traffic”

▪ “work” = flops, updates, iterations…

▪ “traffic” = required data to do “work”

▪ Attainable bandwidth of code = input parameter! Determine effective 

saturated bandwidth of the chip via simple streaming benchmarks to model 

more complex kernels and applications

▪ Assumptions behind the model:

▪ Data transfer and core execution overlap perfectly!

▪ Either the limit is core execution or it is data transfer

▪ Slowest limiting factor “wins”; all others are assumed 

to have no impact

▪ Latency effects are ignored, i.e. perfect streaming mode

▪ “Steady state” code execution (no wind-up/-down effects)
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Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code
(e.g., Perl → Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., loop blocking → see later)

3. Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

4. Hit the core bottleneck by good

serial code
(e.g., -fno-alias → see later)

5. Shift Pmax by accessing

additional hardware features or

using a different 

algorithm/implementation
(e.g., scalar → SIMD)

(c) RRZE 2019 Node-Level Performance Engineering



Multicore performance tools:

Probing performance behavior

likwid-perfctr
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Probing performance behavior

▪ How do we find out about the performance properties and 

requirements of a parallel code?

▪ Profiling via advanced tools is often overkill

▪ A coarse overview is often sufficient

▪ likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on 

Linux/Altix)

▪ Simple end-to-end measurement of hardware performance metrics

▪ “Marker” API for starting/stopping 

counters

▪ Multiple measurement region 

support

▪ Preconfigured and extensible 

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio
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likwid-perfctr
Example usage with preconfigured metric group (shortened) 

$ likwid-perfctr -C N:0-3 -g FLOPS_DP ./stream.exe

--------------------------------------------------------------------------------

CPU name:       Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz

CPU type:       Intel Xeon IvyBridge EN/EP/EX processor

CPU clock:      2.20 GHz

--------------------------------------------------------------------------------

[... YOUR PROGRAM OUTPUT ...]

--------------------------------------------------------------------------------

Group 1: FLOPS_DP

+--------------------------------------+---------+------------+------------+------------+------------

|                 Event                | Counter |   Core 0   |   Core 1   |   Core 2   |   Core 3   |

+--------------------------------------+---------+------------+------------+------------+------------

|           INSTR_RETIRED_ANY          |  FIXC0  |  521332883 |  523904122 |  519696583 |  519193735 |

|         CPU_CLK_UNHALTED_CORE        |  FIXC1  | 1379625927 | 1381900036 | 1378355460 | 1376447129 |

|         CPU_CLK_UNHALTED_REF         |  FIXC2  | 1389460886 | 1393031508 | 1387504228 | 1385276552 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED_DOUBLE |   PMC0  |  176216849 |  176176025 |  177432054 |  176367855 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR_DOUBLE |   PMC1  |    1554    |     599    |     72     |     27     |

|       SIMD_FP_256_PACKED_DOUBLE      |   PMC2  |      0     |      0     |      0     |      0     |

+--------------------------------------+---------+------------+------------+------------+------------

+----------------------+-----------+-----------+-----------+--------------+

|        Metric        |   Core 0  |   Core 1  |   Core 2  |    Core 3    |

+----------------------+-----------+-----------+-----------+--------------+

|  Runtime (RDTSC) [s] |   0.6856  |   0.6856  |   0.6856  |    0.6856    |

| Runtime unhalted [s] |   0.6270  |   0.6281  |   0.6265  |    0.6256    |

|      Clock [MHz]     | 2184.6742 | 2182.6664 | 2185.7404 |   2186.2243  |

|          CPI         |   2.6463  |   2.6377  |   2.6522  |    2.6511    |

|        MFLOP/s |  514.0890 |  513.9685 |  517.6320 |   514.5273   |

|      AVX MFLOP/s     |     0     |     0     |     0     |       0      |

|    Packed MUOPS/s    |  257.0434 |  256.9838 |  258.8160 |   257.2636   |

|    Scalar MUOPS/s    |   0.0023  |   0.0009  |   0.0001  | 3.938426e-05 |

+----------------------+-----------+-----------+-----------+--------------+

Derived 

metrics

Always 

measured

Configured metrics 

(this group)
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likwid-perfctr

Marker API (C/C++ and Fortran)

▪ A marker API is available to restrict measurements to code regions

▪ The API only turns counters on/off. The configuration of the counters is still 
done by likwid-perfctr

▪ Multiple named region support, accumulation over multiple calls

▪ Inclusive and overlapping regions allowed

(c) RRZE 2019

#include <likwid-marker.h>

. . .

LIKWID_MARKER_INIT; // must be called from serial region

#pragma omp parallel

{

LIKWID_MARKER_THREADINIT; // only reqd. if measuring multiple threads

}

. . .

LIKWID_MARKER_START(“Compute”);

. . .

LIKWID_MARKER_STOP(“Compute”);

. . .

LIKWID_MARKER_START(“Postprocess”);

. . .

LIKWID_MARKER_STOP(“Postprocess”);

. . .

LIKWID_MARKER_CLOSE;  // must be called from serial region

Node-Level Performance Engineering

• Activate macros with -DLIKWID_PERFMON

• Run likwid-perfctr with –m option to

activate markers



99

likwid-perfctr

Best practices for runtime counter analysis 

Things to look at (in roughly this order)

▪ Excess work

▪ Load balance (flops, instructions, BW)

▪ In-socket memory BW saturation

▪ Flop/s, loads and stores per flop metrics

▪ SIMD vectorization

▪ CPI metric

▪ # of instructions, 

branches, mispredicted branches

Caveats

▪ Load imbalance may not show 

in CPI or # of instructions
▪ Spin loops in OpenMP

barriers/MPI blocking calls

▪ Looking at “top” or the Windows 

Task Manager does not tell you 

anything useful

▪ In-socket performance 

saturation may have various 

reasons

▪ Cache miss metrics are 

sometimes misleading

(c) RRZE 2019 Node-Level Performance Engineering
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Using Roofline for monitoring “live” jobs on a cluster
Based on measured BW and Flop/s data via likwid-perfctr

(c) RRZE 2019 Node-Level Performance Engineering

Where are the “good” 

and the “bad” jobs in 

this diagram? 



Case study: A Jacobi smoother

The basic performance properties in 2D

Layer conditions

Optimization by spatial blocking
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Stencil schemes

▪ Stencil schemes frequently occur in PDE solvers on regular lattice 

structures

▪ Basically it is a sparse matrix vector multiply (spMVM) embedded in an 

iterative scheme (outer loop) 

▪ but the regular access structure allows for matrix free coding

▪ Complexity of implementation and performance depends on

▪ update scheme, e.g. Jacobi-type, Gauss-Seidel-type, … 

▪ spatial extent, e.g. 7-pt or 25-pt in 3D,…

(c) RRZE 2019 Node-Level Performance Engineering

do iter = 1, max_iterations

Perform sweep over regular grid: y(:)  x(:)

Swap y → x 

enddo

y x
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Jacobi-type 5-pt stencil in 2D

(c) RRZE 2019 Node-Level Performance Engineering

do k=1,kmax

do j=1,jmax

y(j,k) = const * ( x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1) )

enddo

enddo

j

k

s
w
e
e
p

Lattice site 

Update

(LUP)

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice site Updates per second” 

[LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)
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Jacobi 5-pt stencil in 2D: data transfer analysis

(c) RRZE 2019 Node-Level Performance Engineering

do k=1,kmax

do j=1,jmax

y(j,k) = const * ( x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1) )

enddo

enddo

S
W
E
E
P

LD+ST y(j,k)

(incl. write 

allocate)
LD x(j+1,k)

Available in cache 

(used 2 updates before)

LD x(j,k+1)LD x(j,k-1)
Naive balance (incl. write allocate): 

x( :, :) : 3 LD + 

y( :, :) : 1 ST+ 1LD

→ BC = 5 Words / LUP = 40 B / LUP  (assuming double precision)
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Jacobi 5-pt stencil in 2D: Single core performance

(c) RRZE 2019 Node-Level Performance Engineering

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

~24 B / LUP ~40 B / LUP

Code balance (𝐵𝐶
𝑚𝑒𝑚) 

measured with likwid-perfctr

Intel Compiler 

ifort V13.1

jmax

Questions:

1. How to achieve 

24 B/LUP also 
for large jmax?

2. How to sustain 

>600 MLUP/s for 
jmax > 104 ?



Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking
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Analyzing the data flow

(c) RRZE 2019 Node-Level Performance Engineering

cached
Worst case: Cache not large enough to hold 3 layers (rows) of grid

(assume “Least Recently Used” replacement strategy)

j

k

x(0:jmax+1,0:kmax+1)

H
a
lo

 c
e
ll

s
H

a
lo

 c
e
ll

s

miss

miss

miss

hit

miss

miss

miss

hit
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Analyzing the data flow

(c) RRZE 2019 Node-Level Performance Engineering

j

k

Worst case: Cache not large enough to hold 3 layers (rows) of grid

(+assume „Least Recently Used“ replacement strategy)

x(0:jmax+1,0:kmax+1)

miss

miss

miss

hit

miss

miss

miss

hit
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Analyzing the data flow

(c) RRZE 2019 Node-Level Performance Engineering

Reduce inner (j-) 

loop dimension

successively

Best case: 3 

“layers” of grid fit 

into the cache!

j

k

x(0:jmax2+1,0:kmax+1)

x(0:jmax1+1,0:kmax+1)

miss

miss

miss

hit

miss

miss

miss

hit

miss

hit

hit

hit
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Analyzing the data flow: Layer condition

2D 5-pt Jacobi-type stencil

(c) RRZE 2019 Node-Level Performance Engineering

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1) )

enddo

enddo 3 * jmax * 8B < CacheSize/2

“Layer condition” 

double

precision

3 rows of 
jmax Safety margin 

(Rule of thumb)

Layer condition:
• Does not depend on outer loop length (kmax)

• No strict guideline (cache associativity – data traffic for y not included)

• Needs to be adapted for other stencils (e.g., 3D 7-pt stencil)  
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Analyzing the data flow: Layer condition (2D 5-pt Jacobi)

(c) RRZE 2019 Node-Level Performance Engineering

3 * jmax * 8B < CacheSize/2

Layer condition fulfilled? 

y: (1 LD + 1 ST) / LUP x: 1 LD / LUP

BC = 24 B / LUP

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+  x(j,k-1) + x(j,k+1) )

enddo

enddo

YES

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+  x(j,k-1) + x(j,k+1) )

enddo

enddo BC = 40 B / LUP

y: (1 LD + 1 ST) / LUP

NO

x: 3 LD / LUP
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Fulfilling the layer condition

Establish layer condition for all domain sizes?

▪ Idea: Spatial blocking

▪ Reuse elements of x() as long as they stay in cache

▪ Sweep can be executed in any order, e.g. compute blocks in j-direction

→“Spatial Blocking” of j-loop:

→ Determine for given CacheSize an appropriate jblock value:

(c) RRZE 2019 Node-Level Performance Engineering

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock

do k=1,kmax

do j= jb, (jb+jblock-1) ! Length of inner loop: jblock

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+  x(j,k-1) + x(j,k+1) )

enddo

enddo

enddo New layer condition (blocking)
3 * jblock * 8B < CacheSize/2

jblock < CacheSize / 48 B
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Establish the layer condition by blocking

(c) RRZE 2019 Node-Level Performance Engineering

Split up

domain into

subblocks:

e.g. block 

size = 5
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Establish the layer condition by blocking

(c) RRZE 2019 Node-Level Performance Engineering

Additional data 

transfers (overhead) 

at block boundaries!
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Establish layer condition by spatial blocking

(c) RRZE 2019 Node-Level Performance Engineering

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

L1: 32 KB 

L2: 256 KB 

L3: 25 MBjmax

Which cache to block for?

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler 

ifort V13.1

jblock < CacheSize / 48 B

L2: CS=256 KB
jblock=min(jmax,5333) L3: CS=25 MB

jblock=min(jmax,533333)
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Validating the hypotheis: Measure memory code balance

(c) RRZE 2019 Node-Level Performance Engineering

jmax

Measured main memory

code balance (BC)

24 B / LUP

40 B / LUP

Intel Xeon E5-2690 v2

(“IvyBridge”@3 GHz)

Intel Compiler 

ifort V13.1

Blocking factor (CS=25 

MB) still a little too large

Main memory access is not reason 

for different performance

(but L3 access is!)

jmax
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OpenMP parallelization of the blocked 2D stencil

Straightforward OpenMP work sharing:

▪ Caveat: LC must be fulfilled per thread → shared cache causes smaller 

blocks!

(c) RRZE 2019 Node-Level Performance Engineering

do jb=1,jmax,jblock

!$OMP PARALLEL DO SCHEDULE(static)

do k=1,kmax

do j= jb, min(jb+jblock-1,jmax)

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+  x(j,k-1) + x(j,k+1) )

enddo

enddo

!$OMP END PARALLEL DO

enddo

Layer condition:
3 * jblock * 8B < CSt/2

Cache size available 

per thread

T0

T1

T2
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OpenMP parallelization and blocking for shared cache

(c) RRZE 2019 Node-Level Performance Engineering

Example: 2D 5-point stencil on 

Sandy Bridge 8-core, 20 MB L3

▪ Optimal jblock for 1 thread is too 

small for multiple threads 

▪ Smaller but constant jblock works 

for few threads but not for all

▪ Optimal blocking for shared cache 

requires adaptive block size

jmax = 1.2 x 106

Roofline
Roofline

Pattern!

Excess data

volume
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OpenMP parallelization and blocking for shared cache

Example: 2D 5-point stencil on Intel Xeon Broadwell 18-core (non-CoD), 

45 MiB of shared L3 cache

(c) RRZE 2019 Node-Level Performance Engineering

Pattern!

Excess data

volume
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Stencil shapes and layer conditions

a) Long-range 𝑟 = 2: 5 layers (2𝑟 + 1)

b) Long-range 𝑟 = 2 with gaps: 6 layers (2 per populated row)

c) Asymmetric: 3 layers

d) 2D box: 3 layers

(c) RRZE 2019 Node-Level Performance Engineering
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Conclusions from the Jacobi example

▪ We have made sense of the memory-bound performance vs. problem 

size

▪ “Layer conditions” lead to predictions of code balance

▪ “What part of the data comes from where” is a crucial question

▪ The model works only if the bandwidth is “saturated”

▪ In-cache modeling is more involved

▪ Avoiding slow data paths == re-establishing the most favorable layer 

condition

▪ Improved code showed the speedup predicted by the model

▪ Optimal blocking factor can be estimated

▪ Be guided by the cache size the layer condition

▪ No need for exhaustive scan of “optimization space”

▪ Food for thought

▪ Multi-dimensional loop blocking – would it make sense?

▪ Can we choose a “better” OpenMP loop schedule?

▪ What would change if we parallelized inner loops?

(c) RRZE 2019 Node-Level Performance Engineering
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Shortcomings of the roofline model

▪ Saturation effects in multicore chips are not explained

▪ Reason: “saturation assumption” 

▪ Cache line transfers and core execution do sometimes not overlap perfectly

▪ It is not sufficient to measure single-core STREAM to make it work

▪ Only increased “pressure” on the memory

interface can saturate the bus

→ need more cores!

▪ In-cache performance is not correctly

predicted

▪ The ECM performance model gives more

insight:

A(:)=B(:)+C(:)*D(:)

(c) RRZE 2019 Node-Level Performance Engineering

H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying

performance bottlenecks of stencil computations using the

Execution-Cache-Memory model. Proc. ICS15, the 29th 

International Conference on Supercomputing, June 8-11, 2015, 

Newport Beach, CA. DOI: 10.1145/2751205.2751240. 

Preprint: arXiv:1410.5010

http://www.cs.ucr.edu/~ics15/
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010


Case study:

Sparse Matrix Vector Multiplication
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Sparse Matrix Vector Multiplication (SpMV)

▪ Key ingredient in some matrix diagonalization algorithms

▪ Lanczos, Davidson, Jacobi-Davidson

▪ Store only Nnz nonzero elements of matrix and RHS, LHS vectors with 

Nr (number of matrix rows) entries

▪ “Sparse”: Nnz ~ Nr

(c) RRZE 2019 Node-Level Performance Engineering

= + • Nr

General case: 

some indirect 

addressing 

required!
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SpMVM characteristics

▪ For large problems, SpMV is inevitably memory-bound

▪ Intra-socket saturation effect on modern multicores

▪ SpMV is easily parallelizable in shared and distributed memory

▪ Load balancing

▪ Communication overhead

▪ Data storage format is crucial for performance properties

▪ Most useful general format on CPUs: 

Compressed Row Storage (CRS)

▪ Depending on compute architecture

(c) RRZE 2019 Node-Level Performance Engineering



130

…

CRS matrix storage scheme

(c) RRZE 2019 Node-Level Performance Engineering

column index

ro
w

 i
n
d
e
x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

▪ val[] stores all the nonzeros

(length Nnz)

▪ col_idx[] stores the column index 

of each nonzero (length Nnz)

▪ row_ptr[] stores the starting index 

of each new row in val[] (length: 

Nr)
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Case study: Sparse matrix-vector multiply

▪ Strongly memory-bound for large data sets

▪ Streaming, with partially indirect access:

▪ Usually many spMVMs required to solve a problem

▪ Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1

c(i) = c(i) + val(j) * b(col_idx(j)) 

enddo

enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do
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Performance characteristics

▪ Strongly memory-bound for large data sets → saturating performance 

across cores on the chip

▪ Performance seems to depend on the matrix

▪ Can we explain

this?

▪ Is there a

“light speed”

for SpMV?

▪ Optimization?

(c) RRZE 2019 Node-Level Performance Engineering

???

???

10-core Ivy 

Bridge, static 

scheduling
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Example: SpMV node performance model

Sparse MVM in

double precision 

w/ CRS data storage:

(c) RRZE 2019 Node-Level Performance Engineering

𝐵𝑐
𝐷𝑃,𝐶𝑅𝑆 =

8+4+8𝛼+20/𝑁𝑛𝑧𝑟
2

B

F

Absolute minimum code  balance: 𝐵min = 6
B
F

→ 𝐼max =
1
6
F
B

= 6+4α+
10

𝑁𝑛𝑧𝑟

B

F

Hard upper limit for

in-memory 

performance: 𝑏𝑆/𝐵min
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The “𝜶 effect”

DP CRS code balance

▪ α quantifies the traffic

for loading the RHS

▪ 𝛼 = 0 → RHS is in cache

▪ 𝛼 = 1/Nnzr → RHS loaded once

▪ 𝛼 = 1 → no cache

▪ 𝛼 > 1 → Houston, we have a problem!

▪ “Target” performance = 𝑏𝑆/𝐵𝑐
▪ Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict 𝛼?

▪ Not in general

▪ Simple cases (banded, block-structured): Similar to layer condition analysis

→ Determine 𝛼 by measuring the actual memory traffic

(c) RRZE 2019 Node-Level Performance Engineering

𝐵𝑐
𝐷𝑃,𝐶𝑅𝑆(𝛼) =

8+4+8𝛼+20/𝑁𝑛𝑧𝑟
2

B

F

= 6+4α+
10

𝑁𝑛𝑧𝑟

B
F
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Determine 𝜶 (RHS traffic quantification)

▪ 𝑉𝑚𝑒𝑎𝑠 is the measured overall memory data traffic (using, e.g., likwid-

perfctr)

▪ Solve for 𝛼:

Example: kkt_power matrix from the UoF collection

on one Intel SNB socket

▪ 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

▪ 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

▪ → 𝛼 = 0.36, 𝛼𝑁𝑛𝑧𝑟 = 2.5

▪ → RHS is loaded 2.5 times from memory

▪ and: 

(c) RRZE 2019 Node-Level Performance Engineering

𝐵𝑐
𝐷𝑃,𝐶𝑅𝑆 = 6+4α+

10

𝑁𝑛𝑧𝑟

B

F
=

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 F

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

10

𝑁𝑛𝑧𝑟

𝐵𝑐
𝐷𝑃,𝐶𝑅𝑆(𝛼)

𝐵𝑐
𝐷𝑃,𝐶𝑅𝑆(1/𝑁𝑛𝑧𝑟)

= 1.11
11% extra traffic→

optimization potential!
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Three different sparse matrices

Matrix 𝑁 𝑁𝑛𝑧𝑟 𝐵𝑐
𝑜𝑝𝑡

[B/F] 𝑃𝑜𝑝𝑡 [GF/s]

DLR1 278,502 143 6.1 7.64

scai1 3,405,035 7.0 8.0 5.83

kkt_power 2,063,494 7.08 8.0 5.83

(c) RRZE 2019 Node-Level Performance Engineering

DLR1 scai1 kkt_power

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, 𝑏𝑆 = 46.6 ΤGB s
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Now back to the start…

(c) RRZE 2019 Node-Level Performance Engineering

▪ 𝑏𝑆 = 46.6 ΤGB s , 𝐵𝑐
𝑚𝑖𝑛 = 6 ΤB F

▪ Maximum spMVM performance:

𝑃𝑚𝑎𝑥 = 7.8 ΤGF s

▪ DLR1 causes minimum CRS code 

balance (as expected)

▪ scai1 measured balance:

𝐵𝑐
𝑚𝑒𝑎𝑠 ≈ 8.5 B/F > 𝐵𝑐

𝑜𝑝𝑡

▪ → good BW utilization, slightly non-

optimal 𝛼

▪ kkt_power measured balance:

𝐵𝑐
𝑚𝑒𝑎𝑠 ≈ 8.8 B/F > 𝐵𝑐

𝑜𝑝𝑡

▪ → performance degraded by load

imbalance, fix by block-cyclic

schedule

scai1, kkt_power upper limit
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Investigating the load imbalance with kkt_power

(c) RRZE 2019 Node-Level Performance Engineering

static,2048

static

→ Fewer overall instructions, (almost) 

BW saturation, 50% better 

performandce with load balancing

→ CPI value unchanged!

Measurements with likwid-perfctr

(MEM_DP group)
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Roofline analysis for spMVM

▪ Conclusion from the Roofline analysis

▪ The roofline model does not “work” for spMVM due to the RHS 

traffic uncertainties

▪ We have “turned the model around” and measured the actual 

memory traffic to determine the RHS overhead

▪ Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

▪ Do not forget about load balancing!

▪ Consequence: Modeling is not always 100% predictive. It‘s all about

learning more about performance properties!

(c) RRZE 2019 Node-Level Performance Engineering



Case study:

Tall & Skinny Matrix-Transpose Times 

Tall & Skinny Matrix (TSMTTSM)

Multiplication
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TSMTTSM Multiplication

▪ Block of vectors → Tall & Skinny Matrix (e.g. 107 x 101 dense matrix)

▪ Row-major storage format (see SpMVM)

▪ Block vector subspace orthogonalization procedure requires, e.g. 

computation of scalar product between vectors of two blocks

▪ TSMTTSM Mutliplication

𝐾 ≫ 𝑁,𝑀

Assume: 𝛼 = 1; 𝛽 = 0

(c) RRZE 2019 Node-Level Performance Engineering

M

N K
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General rule for dense matrix-matrix multiply: Use vendor-optimized

GEMM, e.g. from Intel MKL1:

TSMTTSM Multiplication

Node-Level Performance Engineering

System Ppeak [GF/s] bS [GB/s] Size Perf. Efficiency

Intel Xeon E5 2660 v2

10c@2.2 GHz
176 GF/s 52 GB/s

SQ 160 GF/s 91%

TS 16.6 GF/s 6%

Intel Xeon E5 2697 v3

14c@2.6GHz
582 GF/s 65 GB/s

SQ 550 GF/s 95%

TS 22.8 GF/s 4%

Matrix sizes: 

Square (SQ): M=N=K=15,000

Tall&Skinny (TS):  M=N=16 ; K=10,000,000

1Intel Math Kernel Library (MKL) 11.3

complex double

double

TS@MKL: 

Good or bad?

𝐶𝑚𝑛 = 

𝑘=1

𝐾

𝐴𝑚𝑘𝐵𝑘𝑛 , 𝑚 = 1. .𝑀, 𝑛 = 1. . 𝑁
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M

N KComputational intensity

𝐼 =
#flops

#bytes (slowest data path)

Optimistic model (minimum data transfer) assuming 𝑀 = 𝑁 ≪ 𝐾 and

double precision:

𝐼𝑑 ≈
2𝐾𝑀𝑁

8 𝐾𝑀 + 𝐾𝑁

F

B
=
𝑀

8

F

B

complex double:

𝐼𝑧 ≈
8𝐾𝑀𝑁

16 𝐾𝑀 + 𝐾𝑁

F

B
=
𝑀

4

F

B

TSMTTSM Roofline model

Node-Level Performance Engineering
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Now choose 𝑀 = 𝑁 = 16→ 𝐼𝑑 ≈
16

8

F

B
and 𝐼𝑧 ≈

16

4

F

B
, i.e. 𝐵𝑑 ≈ 0.5

B

F
, 𝐵𝑧 ≈ 0.25

B

F

Intel Xeon E5 2660 v2 (𝑏𝑆 = 52
GB

s
) → P = 104

GF
s

(double)

Measured (MKL): 16.6
GF

s

Intel Xeon E5 2697 v3 (𝑏𝑆 = 65
GB

s
) → P = 240

GF
s

(double complex)

Measured (MKL): 22.8
GF

s

TSMTTSM Roofline performance prediction

→ Potential speedup: 6–10x vs. MKL

Node-Level Performance Engineering
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Not shown: Inner Loop boundaries (n,m) known at compile time (kernel generation)

k assumed to be even

Can we implement a better TSMTTSM kernel than Intel?

Long Loop (k): Parallel 

Outer Loop Unrolling

Compiler directives

Most operations

in cache

Reduction on 

small result matrix

Node-Level Performance Engineering

Thread local copy of small (results) matrix
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TSMTTSM MKL vs. “hand crafted” (OPT)

System Ppeak / bS Version Performance RLM Efficiency

Intel Xeon E5 2660 v2

10c@2.2 GHz

176 GF/s

52 GB/s

TS OPT 98 GF/s 94 %

TS MKL 16.6 GF/s 16 %

Intel Xeon E5 2697 v3

14c@2.6GHz

582 GF/s

65 GB/s

TS OPT 159 GF/s 66 %

TS MKL 22.8 GF/s 9.5 %

TS:  M=N=16 ; K=10,000,000

E5 2660 v2

double

E5 2697 v3

double complexSpeedup

vs. MKL: 

5x – 25x 

Node-Level Performance Engineering



ERLANGEN REGIONAL 

COMPUTING CENTER 

Single Instruction Multiple Data 

(SIMD)
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A word on terminology

▪ SIMD == “one instruction → several operations”

▪ “SIMD width” == number of operands that fit into a register

▪ No statement about parallelism among those operations

▪ Original vector computers: long registers, pipelined execution, but no

parallelism (within the instruction)

Today

▪ x86: most SIMD instructions fully parallel

▪ “Short Vector SIMD”

▪ Some exceptions on some archs (e.g., vdivpd)

▪ NEC Tsubasa: 32-way parallelism but

SIMD width = 256 (DP) 

SIMD terminology
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Example: Data types in 32-byte SIMD registers (AVX[2]) 

▪ Supported data types depend on actual SIMD instruction set

Scalar slot

Node-Level Performance Engineering
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In-core features are driving peak performance

SSE2

AVX

AVX512

FMA

Node-Level Performance Engineering
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SIMD processing – Basics 

Steps (done by the compiler) for “SIMD processing”

for(int i=0; i<n;i++) 

C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){

C[i]  =A[i]  +B[i];

C[i+1]=A[i+1]+B[i+1];

C[i+2]=A[i+2]+B[i+2];

C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:

VLOAD R0  A[i]

VLOAD R1  B[i]

V64ADD[R0,R1] → R2

VSTORE R2 → C[i]

ii+4

i<(n-4)? JMP LABEL1 

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to 

register R0

Add the corresponding 64 Bit entries in  R0 and

R1 and store the 4 results to R2

Store R2 (256 Bit) to address 

starting at C[i]

This 

should 

not be 

done 

by 

hand! 

Node-Level Performance Engineering
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SIMD processing – Basics 

No SIMD vectorization  for loops with data dependencies:

“Pointer aliasing” may prevent  SIMDfication

C/C++ allows that A → &C[-1] and B → &C[-2]

→ C[i] = C[i-1] + C[i-2]: dependency → No SIMD

If “pointer aliasing” is not used, tell the compiler:

–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)

restrict keyword (C only!):

for(int i=0; i<n;i++) 

A[i]=A[i-1]*s;

void f(double *A, double *B, double *C, int n) {

for(int i=0; i<n; ++i) 

C[i] = A[i] + B[i];

}

void f(double *restrict A, double *restrict B, double *restrict C, int n) {…}

Node-Level Performance Engineering



156

Options:

▪ The compiler does it for you (but: aliasing, alignment, language, 

abstractions)

▪ Compiler directives (pragmas)

▪ Alternative programming models for compute kernels (OpenCL, ispc)

▪ Intrinsics (restricted to C/C++)

▪ Implement directly in  assembler

To use intrinsics the following headers are available:

▪ xmmintrin.h (SSE)

▪ pmmintrin.h (SSE2)

▪ immintrin.h (AVX)

▪ x86intrin.h (all extensions)

How to leverage SIMD: your options

for (int j=0; j<size; j+=16){

t0 = _mm_loadu_ps(data+j);

t1 = _mm_loadu_ps(data+j+4);

t2 = _mm_loadu_ps(data+j+8);

t3 = _mm_loadu_ps(data+j+12);

sum0 = _mm_add_ps(sum0, t0);

sum1 = _mm_add_ps(sum1, t1);

sum2 = _mm_add_ps(sum2, t2);

sum3 = _mm_add_ps(sum3, t3);

}

Node-Level Performance Engineering
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User-mandated vectorization (OpenMP 4)

▪ Since OpenMP 4.0 SIMD features are a part of the OpenMP standard

▪ #pragma omp simd enforces vectorization

▪ Essentially a standardized “go ahead, no dependencies here!”

▪ Do not lie to the compiler here! 

▪ Prerequesites:

▪ Countable loop

▪ Innermost loop

▪ Must conform to for-loop style of OpenMP worksharing constructs

▪ There are additional clauses:  

reduction, vectorlength, private, collapse, ...

for (int j=0; j<n; j++) {

#pragma omp simd reduction(+:b[j:1])

for (int i=0; i<n; i++) {

b[j] += a[j][i];

}

}

Node-Level Performance Engineering
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SIMD is an in-core feature!

DP sum reduction (single core) 

(c) RRZE 2019 Node-Level Performance Engineering

Intel Broadwell EP 2.3 GHz Intel KNL 1.3 GHz

do i = 1,N

s = s + A(i)

enddo
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Rules for vectorizable loops

1. Inner loop 

2. Countable (loop length can be determined at loop entry)

3. Single entry and single exit

4. Straight line code (no conditionals)

5. No (unresolvable) read-after-write data dependencies

6. No function calls (exception intrinsic math functions)

Better performance with:

1. Simple inner loops with unit stride (contiguous data access)

2. Minimize indirect addressing

3. Align data structures to SIMD width boundary

4. In C use the restrict keyword and/or const qualifiers and/or 

compiler options to rule out array/pointer aliasing 



Efficient parallel programming 

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy
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ccNUMA performance problems
“The other affinity” to care about

▪ ccNUMA:

▪ Whole memory is transparently accessible by all processors

▪ but physically distributed

▪ with varying bandwidth and latency

▪ and potential contention (shared memory paths)

▪ How do we make sure that memory access is always as "local" and 

"distributed" as possible?

Note: Page placement is implemented in units of OS pages (often 4kB, 

possibly more)
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How much bandwidth does nonlocal access cost?

(c) RRZE 2019 Node-Level Performance Engineering

Example: AMD “Epyc” 2-socket system (8 

chips, 2 sockets, 48 cores): STREAM Triad 

bandwidth measurements [Gbyte/s]

S
o

c
k
e

t 
0

S
o

c
k
e

t 
1

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

CPU node

MEM node
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numactl as a simple ccNUMA locality tool :

How do we enforce some locality of access?

▪ numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

--preferred=<node> a.out # map pages on <node> 

# and others if <node> is full

--interleave=<nodes> a.out # map pages round robin across

# all <nodes>

▪ Examples:

for m in `seq 0 3`; do

for c in `seq 0 3`; do 

env OMP_NUM_THREADS=8 \

numactl --membind=$m --cpunodebind=$c ./stream

done

done

env OMP_NUM_THREADS=4 numactl --interleave=0-3 \

likwid-pin -c N:0,4,8,12 ./stream

▪ But what is the default without numactl?

ccNUMA map scan
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ccNUMA default memory locality

▪ "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the 

processor that first touches it!

▪ Except if there is not enough local memory available

▪ This might be a problem, see later

▪ Caveat: “to touch" means “to write", not “to allocate"

▪ Example: 

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE/sizeof(double)

huge[i] = 0.0;

▪ It is sufficient to touch a single item to map the entire page

Memory not 

mapped here yet

Mapping takes 

place here
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Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel 

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end do

!$OMP end parallel

Most simple case: explicit initialization 



168(c) RRZE 2019 Node-Level Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

READ(1000) A

!$OMP parallel do

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel 

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end do

!$OMP end parallel

Sometimes initialization is not so obvious: I/O cannot be easily 

parallelized, so “localize” arrays before I/O
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Coding for Data Locality

▪ Required condition: OpenMP loop schedule of initialization must be the 

same as in all computational loops

▪ Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure…

▪ Imposes some constraints on possible optimizations (e.g. load balancing)

▪ Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping

▪ If dynamic scheduling/tasking is unavoidable, more advanced methods may 

be in order

▪ OpenMP 5.0 will have rudimentary memory affinity functionality

▪ How about global objects?

▪ Better not use them

▪ If communication vs. computation is favorable, might consider properly 

placed copies of global data

▪ C++: Arrays of objects and std::vector<> are by default initialized 

sequentially

▪ STL allocators provide an elegant solution
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Diagnosing bad locality

▪ If your code is cache bound, you might not notice any locality problems

▪ Otherwise, bad locality limits scalability 

(whenever a ccNUMA node boundary is crossed)

▪ Just an indication, not a proof yet

▪ Running with  numactl --interleave might give you a hint

▪ See later

▪ Consider using performance counters

▪ LIKWID-perfctr can be used to measure nonlocal memory accesses

▪ Example for Intel dual-socket system (IvyBridge, 2x10-core):

likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out
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Using performance counters for diagnosing bad ccNUMA 

access locality

▪ Intel Ivy Bridge EP node (running 2x5 threads):

measure NUMA traffic per core

▪ Summary output:

▪ Caveat: NUMA metrics vary

strongly between CPU models

+--------------------------------------+--------------+-------------+-------------+--------------+

|                Metric |      Sum |     Min     |     Max     |      Avg |

+--------------------------------------+--------------+-------------+-------------+--------------+

|       Runtime (RDTSC) [s] STAT       |   4.050483   |  0.4050483  |  0.4050483  |   0.4050483  |

|       Runtime unhalted [s] STAT      |    3.03537   |  0.3026072  |  0.3043367  |   0.303537   |

|           Clock [MHz] STAT           |   32996.94   |   3299.692  |   3299.696  |   3299.694   |

|               CPI STAT               |    40.3212   |   3.702072  |   4.244213  |    4.03212   |

|  Local DRAM data volume [GByte] STAT |  7.752933632 | 0.735579264 | 0.823551488 | 0.7752933632 |

|  Local DRAM bandwidth [MByte/s] STAT |   19140.761 |   1816.028  |   2033.218  |   1914.0761  |

| Remote DRAM data volume [GByte] STAT |  9.16628352  |  0.86682464 | 0.957811776 |  0.916628352 |

| Remote DRAM bandwidth [MByte/s] STAT |   22630.098 |   2140.052  |   2364.685  |   2263.0098  |

|    Memory data volume [GByte] STAT   | 16.919217152 | 1.690376128 |  1.69339104 | 1.6919217152 |

|    Memory bandwidth [MByte/s] STAT   |   41770.861 |   4173.27   |   4180.714  |   4177.0861  |

+--------------------------------------+--------------+-------------+-------------+--------------+

likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

About half of the overall

memory traffic is caused by

remote domain!
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The curse and blessing of interleaved placement: 

OpenMP STREAM triad on a dual AMD Epyc 7451 (6 cores per LD)

▪ Parallel init: Correct parallel initialization

▪ LD0: Force data into LD0 via  numactl –m 0

▪ Interleaved: numactl --interleave <LD range>

(c) RRZE 2019 Node-Level Performance Engineering



181

Summary on ccNUMA issues

▪ Identify the problem

▪ Is ccNUMA an issue in your code?

▪ Simple test: run with numactl --interleave 

▪ Apply first-touch placement

▪ Look at initialization loops

▪ Consider loop lengths and static scheduling

▪ C++ and global/static objects may require special care

▪ NUMA balancing is active on many Linux systems today

▪ Automatic page migration

▪ Slow process, may take many seconds (configurable)

▪ Still a good idea to to parallel first touch

▪ If dynamic scheduling cannot be avoided

▪ Consider round-robin placement as a quick (but non-ideal) fix

▪ OpenMP 5.0 has some data affinity support

(c) RRZE 2019 Node-Level Performance Engineering



OpenMP performance issues on multicore

Barrier synchronization overhead

Topology dependence



184

The OpenMP-parallel vector triad benchmark

OpenMP work sharing in the benchmark loop

(c) RRZE 2019 Node-Level Performance Engineering

double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

!$OMP END DO

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL

Implicit barrier
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OpenMP vector triad on Sandy Bridge sockets (3 GHz)

(c) RRZE 2019 Node-Level Performance Engineering

sync 

overhead 

grows with # 

of threads

bandwidth 

scalability 

across 

memory 

interfaces

L1 core limit

Pattern!

OpenMP barrier

overhead
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Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

▪ Next slides: Test OpenMP Barrier performance…

▪ for different compilers

▪ and different topologies:

▪ shared cache

▪ shared socket

▪ between sockets

▪ and different thread counts

▪ 2 threads

▪ full domain (chip, socket, node)

Threads are synchronized at explicit AND 

implicit barriers. These are a main source of 

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)
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Thread synchronization overhead on IvyBridge-EP 
Barrier overhead in CPU cycles

2 Threads Intel  16.0 GCC 5.3.0

Shared L3 599 425

SMT threads 612 423

Other socket 1486 1067

Full domain Intel 16.0 GCC 5.3.0

Socket (10 cores) 1934 1301

Node (20 cores) 4999 7783

Node +SMT 5981 9897

Strong topology 

dependence!

10 cores 10 cores

2.2 GHz

▪ Strong dependence on compiler, CPU and system environment!

▪ OMP_WAIT_POLICY=ACTIVE can make a big difference

Overhead grows 

with thread count
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Thread synchronization overhead on Xeon Phi 7210 (64-core)

Barrier overhead in CPU cycles (Intel C compiler 16.03)

SMT1 SMT2 SMT3 SMT4

One core n/a 963 1580 2240

Full chip 5720 8100 9900 11400

Still the pain may be much larger, as more work can be done in one cycle

on Phi compared to a full Ivy Bridge node

3.2x cores (20 vs 64) on Phi

4x more operations per cycle per core on Phi

→ 4 ∙ 3.2 = 12.8x more work done on Xeon Phi per cycle

1.9x more barrier penalty (cycles) on Phi (11400 vs. 6000)

→ One barrier causes 1.9 ∙ 12.8 ≈ 24x more pain ☺.

2 threads on 

distinct cores: 

730
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Tutorial conclusion

▪ Multicore architecture == multiple complexities

▪ Affinity matters → pinning/binding is essential

▪ Bandwidth bottlenecks → inefficiency is often made on the chip level

▪ Topology dependence of performance features → know your hardware!

▪ Put cores to good use

▪ Bandwidth bottlenecks → surplus cores → functional parallelism!?

▪ Shared caches → fast communication/synchronization → better

implementations/algorithms?

▪ Simple modeling techniques and patterns help us

▪ … understand the limits of our code on the given hardware

▪ … identify optimization opportunities

▪ … learn more, especially when they do not work!

▪ Simple tools get you 95% of the way

▪ e.g., with the LIKWID tool suite

(c) RRZE 2019 Node-Level Performance Engineering

Most 

powerful 

tool?
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THANK YOU.
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Abstract

▪ SC19 full-day tutorial: Node-Level Performance Engineering

▪ Presenter(s): Georg Hager, Gerhard Wellein

▪ ABSTRACT:

The advent of multi- and manycore chips has led to a further opening of the gap between 

peak and application performance for many scientific codes. This trend is accelerating as 

we move from petascale to exascale. Paradoxically, bad node-level performance helps to 

“efficiently” scale to massive parallelism, but at the price of increased overall time to 

solution. If the user cares about time to solution on any scale, optimal performance on the 

node level is often the key factor. We convey the architectural features of current 

processor chips, multiprocessor nodes, and accelerators, as far as they are relevant for 

the practitioner. Peculiarities like SIMD vectorization, shared vs. separate caches, 

bandwidth bottlenecks, and ccNUMA characteristics are introduced, and the influence of 

system topology and affinity on the performance of typical parallel programming 

constructs is demonstrated. Performance engineering and performance patterns are 

suggested as powerful tools that help the user understand the bottlenecks at hand and to 

assess the impact of possible code optimizations. A cornerstone of these concepts is the 

roofline model, which is described in detail, including useful case studies, limits of its 

applicability, and possible refinements.  


