FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Microbenchmarking for architectural exploration

Probing of the memory hierarchy

Saturation effects

OpenMP barrier overhead

Motivation for Microbenchmarking as a tool —==

= |solate small kernels to:
= Separate influences
= Determine specific machine capabilities (light speed)
= Gain experience about software/hardware interaction
= Determine programming model overhead

= Possibilities:
= Readymade benchmark collections (epcc OpenMP, IMB)
= STREAM benchmark for memory bandwidth
= Implement own benchmarks (difficult and error prone)

= l1kwid-bench tool: Offers collection of benchmarks and framework
for rapid development of assembly code kernels

Node-level Performance Engineering (c) RRZE 2020

FRIEDRICH-ALEXANDER

The parallel vector triad benchmark —
A “swiss army knife” for microbenchmarking

FRIEDRICH-ALEXANDER

double striad seq(double* restrict a, double* restrict b,
double* restrict c, double* restrict d, Int N, int i1ter) {

double S, E;

Required to get optimal
code with Intel compiler!

for(int J = 0; J <1

#pragma vector aligned
for (int 1 =

a[fi1] = b[

Prevents smarty-pants
compilers from doing
“clever” stuff

}
1T (a[N-1] > 2000) printf('Ar = %P\n",a[N-1]);

+
return E-S; }

= Report performance for different N, choose 1ter so that accurate time

measurement is possible
= This kernel is limited by data transfer performance for all memory levels on
all architectures, ever!

Node-level Performance Engineering (c) RRZE 2020

Schonauer triad on one CascadelLake core 2.5GHz

Zﬂmo I I T T TTTI I T T TTTT] I I T T TTTI I IIIIIII| I

17500 — SIMD
- .scalar

O
=
S

12500 L1 L2 L3

| 32kB 1MB 28MB

=
=
S

7500

5000 ™y
i T My e m——— |

0] IIIIIII|] IIIIIIII] IIIIIII| | IIIIIII|]

10 100 1000 10000 100000
Data set size [kB]

Performance [Mflop/s]

Node-level Performance Engineering (c) RRZE 2020

Schoénauer triad on one CascadelLake core 2.5GHz =£E Sugpe

20000

—_ SIMD
- gcalar

17500

f—
h
=
=

12500 What are the

theoretical limits?

10000

7500

Performance [Mflop/s]

5000

2500

I hw——-’_-.-._.

e

S S S

Lol Lol Lol Lol |
01 2 3 4 5

10 10~ 10 10 10
Data set size [kB]

Node-level Performance Engineering (c) RRZE 2020

The throughput-parallel vector triad benchmark = fpe

Every core runs its own, independent triad benchmark
—> pure hardware probing, no impact from OpenMP overhead

#pragma omp parallel
{
double* al;
posix_memalign((void**) &al, ARRAY_ALIGNMENT, N * sizeof(double));
#pragma omp single

Every thread works on
private copy of a!

for(int j=0; j<iter; j++)
#pragma vector aligned
for (int i=0:7"i<N; i++) {
al[i] = b[i] + d[i] * c[i];
+
1T (al[N-1] > 2000) printf(""A1 = %¥RA\n",al[N-1]);

}

#pragma omp single

}

Node-level Performance Engineering (c) RRZE 2020 6

Throughput vector triad on ==
one CascadelLake node (2.5 GHz) ==

FRIEDRICH-ALEXANDER

SDU | | IIIIII| | | IIIIII| | | T T TTI1 | | IIIIII| |
N m— | T] .
700 — |12
L e | T4
Adding another socket — T8 Socket 1
w 600 doubles the performance T1?2
g.. I without changing the shape! —T1O || -
&= 500 —|T20
o i [T40]| Socket 2
L
Q 400
=] _
E 300 Performance scales in
- L1 /L2 cache levels!
"1: _
E 200 Drop stays at the same
place for private caches! 1

L3 cache is not
scalable
1 2 3 4 5

10 10~ 10 10 10
Data set size [kB]

Node-level Performance Engineering (c) RRZE 2020

Throughput vector triad on CascadelLake ——
(memory close-up)

FRIEDRICH-ALEXANDER

50 | | T T
45
40 Socket 1
'_I —
< Saturating L3 cache
g" 35 performance
= _
0O 30 Socket 2
— Second sockets adds .
§ 25 another memory interface!
| % —
3
E 20 \ Performance saturation
E , iIn main memory!
= 15 \
al \ .
10 o
3
0 L ! !

50000 100000 150000 200000

Data set size [kB]

Node-level Performance Engineering (c) RRZE 2020

Attainable memory bandwidth (UPDATE!) =itz

60

10f Intel Broadwell (22 cores)

1 does not~_,|

. 140f | |
BW saturation- AMD Naples (24 cores)
in NUMA ™[

domain 1% | .

Single core

saturate BW 1 i
CoD enabled | | [T TR
s 10 15 % 6 12 18 24
Threads # Threads
600
100~ -
500 .
80 .
400]
= 601 N <@
3 £ 300)
40 | 200} -
Cavium ThunderX2 (ARM)
20r DDR4-2400 memory i 100 1
NVIDIA P100 (Pascal) |
! | ! | L | ! | L | | | | . . .
OO 5 10 15 20 25 30 00 10600 20600 30600 40600 50600 6000
cores # Threads

Node-level Performance Engineering

(c) RRZE 2020

FRIEDRICH-ALEXANDER

The OpenMP-parallel vector triad benchmark =

OpenMP work sharing in the benchmark loop

#pragma omp parallel
{
for(int J = 0; J < i1ter; j++) {
#pragma omp for
#pragma vector aligned
for (int 1=0; I<N; 1++) {
ali] = b[i] + d[1] * c[1];

if (a[N=t}-> 2000) printf(’Ai = %F\n",a[N-1]):

Implicit barrier

Node-level Performance Engineering (c) RRZE 2020

10

OpenMP vector triad on CascadelLake node ——

FRIEDRICH-ALEXANDER

(2.2 GHz) -
150 | | IIIIII| | | LI | | L | | L |
[|== Sequential |
125 - TI1
— = T20 (1 socket)
< [|= T40 (2 sockets) |
& 100
L,
G |
E 75 Impact on
= performance even
= i with 1 thread i
z
& 50
S | |
Sync overhead grows
25 with number of threads \
0 > [I ENERIEEEE SRR
10' 10” 10° 10* 10°

Data set size [kB]

Node-level Performance Engineering (c) RRZE 2020

Synchronization (barrier) overhead

Welcome to the multi-/many-core era ——
Synchronization of threads may be expensive!

FRIEDRICH-ALEXANDER

1$OMP PARALLEL .. _ o
Threads are synchronized at explicit AND

implicit barriers. These are a main source of

130MP BARRIER overhead in OpenMP programs.

1$S0MP DO : L

Determine costs via simple benchmark
1$OMP ENDDO
1$0MP END PARALLEL

On x86 systems there is no hardware support for synchronization!
= Next slide: Test OpenMP Barrier performance...
= for different compilers

= and different topologies:
= shared cache
= shared socket
= between sockets

= and different thread counts
= 2 threads
= full domain (chip, socket, node)

Node-level Performance Engineering (c) RRZE 2020

13

Thread synchronization overhead on IvyBridge-EP ==
Barrier overhead in CPU cycles

FRIEDRICH-ALEXANDER
UN

2 Threads Intel 16.0 GCC5.3.0 9 2 GHz
Shared L3 599 495 ¥ 10cores ¥ B 10coes [F
SMT threads 612 423 {lmff"r """"" \ jlmffﬂr """"" f;
Other socket 1486 1067
~— /
Strong topology
dependence!
Full domain Intel 16.0 GCC5.3.0
Socket (10 cores) 1934 1301
Overhead grows

Node (20 cores) 4999 7783 with thread count
Node +SMT 5981 9897

Strong dependence on compiler, CPU and system environment!
OMP_WAIT POLICY=ACTIVE can make a big difference

Node-level Performance Engineering (c) RRZE 2020

FRIEDRICH-ALEXANDER

Scaling of barrier cost =

Comparison of barrier synchronization cost
with increasing number of threads

1. 2x Haswell 14-core CoD mode

2. Optimistic measurements —— Intel 17.0.4 — gcc 6.2.0
(repeated 1000s of times) IR I
- _ + OMP parallel for . I! |+ OMP parallel for !I d
3. Noimpact from previous 60007 —ompfor I‘I — OMP for .
.. . - ® OMP barrier = ¢ OMP barrier
activity in cache 5 so00f | 15000
- I
©
. . .2 4000
4. ldeal scaling: logarithmic g I 1 10000k
© 3000
Q0 |
3
m 2000_ 50001
1000
0_] | |]] | 0] | |]]
5 10 15 20 25 5 10 15 20 25
cores # cores

Node-level Performance Engineering (c) RRZE 2020

Conclusions from the microbenchmarks Ao

= Microbenchmarks can yield surprisingly deep insights

= Affinity matters!

= Almost all performance properties depend on the position of
- Data
- Threads/processes

= Consequences
- Know where your threads are running
- Know where your data is (see later for that)

= Bandwidth bottlenecks are ubiquitous

= Synchronization overhead may be an issue
= ... and also depends on affinity!
= Many-core poses new challenges in terms of synchronization

Node-level Performance Engineering (c) RRZE 2020

	Microbenchmarking for architectural exploration
	Motivation for Microbenchmarking as a tool
	The parallel vector triad benchmark�A “swiss army knife” for microbenchmarking
	Schönauer triad on one CascadeLake core 2.5GHz
	Schönauer triad on one CascadeLake core 2.5GHz
	The throughput-parallel vector triad benchmark
	Throughput vector triad on�one CascadeLake node (2.5 GHz)
	Throughput vector triad on CascadeLake (memory close-up)
	Attainable memory bandwidth (UPDATE!)
	The OpenMP-parallel vector triad benchmark
	OpenMP vector triad on CascadeLake node (2.2 GHz)
	OpenMP performance issues �on multicore
	Welcome to the multi-/many-core era�Synchronization of threads may be expensive!
	Thread synchronization overhead on IvyBridge-EP �Barrier overhead in CPU cycles
	Scaling of barrier cost
	Conclusions from the microbenchmarks

