
Microbenchmarking for architectural exploration

Probing of the memory hierarchy

Saturation effects

OpenMP barrier overhead

 Isolate small kernels to:
 Separate influences
 Determine specific machine capabilities (light speed)
 Gain experience about software/hardware interaction
 Determine programming model overhead
 …

 Possibilities:
 Readymade benchmark collections (epcc OpenMP, IMB)
 STREAM benchmark for memory bandwidth
 Implement own benchmarks (difficult and error prone)
 likwid-bench tool: Offers collection of benchmarks and framework

for rapid development of assembly code kernels

(c) RRZE 2020 2Node-level Performance Engineering

Motivation for Microbenchmarking as a tool

double striad_seq(double* restrict a, double* restrict b,
double* restrict c, double* restrict d, int N, int iter) {

double S, E;
S = getTimeStamp();
for(int j = 0; j < iter; j++) {

#pragma vector aligned
for (int i = 0; i < N; i++) {

a[i] = b[i] + d[i] * c[i];
}
if (a[N-1] > 2000) printf("Ai = %f\n",a[N-1]);

}
E = getTimeStamp();
return E-S; }

 Report performance for different N, choose iter so that accurate time
measurement is possible

 This kernel is limited by data transfer performance for all memory levels on
all architectures, ever!

(c) RRZE 2020 3Node-level Performance Engineering

The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

Prevents smarty-pants
compilers from doing
“clever” stuff

Required to get optimal
code with Intel compiler!

Node-level Performance Engineering (c) RRZE 2020 4

Schönauer triad on one CascadeLake core 2.5GHz

L1
32kB

L2
1MB

L3
28MB

Node-level Performance Engineering (c) RRZE 2020 5

Schönauer triad on one CascadeLake core 2.5GHz

x7
 ?

What are the
theoretical limits?

Every core runs its own, independent triad benchmark
 pure hardware probing, no impact from OpenMP overhead

(c) RRZE 2020 6Node-level Performance Engineering

The throughput-parallel vector triad benchmark

#pragma omp parallel
{

double* al;
posix_memalign((void**) &al, ARRAY_ALIGNMENT, N * sizeof(double));

#pragma omp single
S = getTimeStamp();
for(int j=0; j<iter; j++) {

#pragma vector aligned
for (int i=0; i<N; i++) {

al[i] = b[i] + d[i] * c[i];
}
if (al[N-1] > 2000) printf("Ai = %f\n",al[N-1]);

}
#pragma omp single

E = getTimeStamp();
}

Every thread works on
private copy of a!

Node-level Performance Engineering (c) RRZE 2020 7

Throughput vector triad on
one CascadeLake node (2.5 GHz)

Performance scales in
L1 / L2 cache levels!

Drop stays at the same
place for private caches!

L3 cache is not
scalable

Adding another socket
doubles the performance
without changing the shape!

Socket 1

Socket 2

Node-level Performance Engineering (c) RRZE 2020 8

Throughput vector triad on CascadeLake
(memory close-up)

Performance saturation
in main memory!

Second sockets adds
another memory interface!

Saturating L3 cache
performance

Socket 1

Socket 2

Node-level Performance Engineering (c) RRZE 2020 9

Attainable memory bandwidth (UPDATE!)

ECC=on

Cavium ThunderX2 (ARM)
DDR4-2400 memory NVIDIA P100 (Pascal)

Intel Broadwell (22 cores)
CoD enabled

AMD Naples (24 cores)

Single core
does not

saturate BW

BW saturation
in NUMA
domain

ECC=on

NVIDIA P100 (Pascal)

Node-level Performance Engineering (c) RRZE 2020 10

The OpenMP-parallel vector triad benchmark

S = getTimeStamp();
#pragma omp parallel

{
for(int j = 0; j < iter; j++) {

#pragma omp for
#pragma vector aligned

for (int i=0; i<N; i++) {
a[i] = b[i] + d[i] * c[i];

}
if (a[N-1] > 2000) printf("Ai = %f\n",a[N-1]);

}
}
E = getTimeStamp();

OpenMP work sharing in the benchmark loop

Implicit barrier

Node-level Performance Engineering (c) RRZE 2020 11

OpenMP vector triad on CascadeLake node
(2.2 GHz)

Sync overhead grows
with number of threads

Impact on
performance even

with 1 thread

OpenMP performance issues
on multicore

Synchronization (barrier) overhead

!$OMP PARALLEL …
…
!$OMP BARRIER
!$OMP DO
…
!$OMP ENDDO
!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!
 Next slide: Test OpenMP Barrier performance…
 for different compilers
 and different topologies:

 shared cache
 shared socket
 between sockets

 and different thread counts
 2 threads
 full domain (chip, socket, node)

Welcome to the multi-/many-core era
Synchronization of threads may be expensive!

Threads are synchronized at explicit AND
implicit barriers. These are a main source of
overhead in OpenMP programs.

Determine costs via simple benchmark

(c) RRZE 2020Node-level Performance Engineering 13

(c) RRZE 2020 14Node-level Performance Engineering

Thread synchronization overhead on IvyBridge-EP
Barrier overhead in CPU cycles

2 Threads Intel 16.0 GCC 5.3.0
Shared L3 599 425
SMT threads 612 423
Other socket 1486 1067

Full domain Intel 16.0 GCC 5.3.0
Socket (10 cores) 1934 1301
Node (20 cores) 4999 7783
Node +SMT 5981 9897

Strong topology
dependence!

10 cores 10 cores

2.2 GHz

 Strong dependence on compiler, CPU and system environment!
 OMP_WAIT_POLICY=ACTIVE can make a big difference

Overhead grows
with thread count

Node-level Performance Engineering (c) RRZE 2020 15

Scaling of barrier cost

Comparison of barrier synchronization cost
with increasing number of threads

1. 2x Haswell 14-core CoD mode
2. Optimistic measurements

(repeated 1000s of times)
3. No impact from previous

activity in cache

4. Ideal scaling: logarithmic

Intel 17.0.4 gcc 6.2.0

Ba
rri

er
ov

er
he

ad
[c

y]

 Microbenchmarks can yield surprisingly deep insights

 Affinity matters!
 Almost all performance properties depend on the position of

 Data
 Threads/processes

 Consequences
 Know where your threads are running
 Know where your data is (see later for that)

 Bandwidth bottlenecks are ubiquitous
 Synchronization overhead may be an issue
 … and also depends on affinity!
 Many-core poses new challenges in terms of synchronization

(c) RRZE 2020 16Node-level Performance Engineering

Conclusions from the microbenchmarks

	Microbenchmarking for architectural exploration
	Motivation for Microbenchmarking as a tool
	The parallel vector triad benchmark�A “swiss army knife” for microbenchmarking
	Schönauer triad on one CascadeLake core 2.5GHz
	Schönauer triad on one CascadeLake core 2.5GHz
	The throughput-parallel vector triad benchmark
	Throughput vector triad on�one CascadeLake node (2.5 GHz)
	Throughput vector triad on CascadeLake (memory close-up)
	Attainable memory bandwidth (UPDATE!)
	The OpenMP-parallel vector triad benchmark
	OpenMP vector triad on CascadeLake node (2.2 GHz)
	OpenMP performance issues �on multicore
	Welcome to the multi-/many-core era�Synchronization of threads may be expensive!
	Thread synchronization overhead on IvyBridge-EP �Barrier overhead in CPU cycles
	Scaling of barrier cost
	Conclusions from the microbenchmarks

