
Microbenchmarking for architectural exploration

Probing of the memory hierarchy

Saturation effects 

OpenMP barrier overhead



 Isolate small kernels to:
 Separate influences
 Determine specific machine capabilities (light speed)
 Gain experience about software/hardware interaction
 Determine programming model overhead
 …

 Possibilities:
 Readymade benchmark collections (epcc OpenMP, IMB)
 STREAM benchmark for memory bandwidth
 Implement own benchmarks (difficult and error prone)
 likwid-bench tool: Offers collection of benchmarks and framework 

for rapid development of assembly code kernels
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Motivation for Microbenchmarking as a tool



double striad_seq(double* restrict a, double* restrict b, 
double* restrict c, double* restrict d, int N, int iter) {

double S, E;
S = getTimeStamp();
for(int j = 0; j < iter; j++) {

#pragma vector aligned
for (int i = 0; i < N; i++) {

a[i] = b[i] + d[i] * c[i];
}
if (a[N-1] > 2000) printf("Ai = %f\n",a[N-1]);

}
E = getTimeStamp();
return E-S; }

 Report performance for different N, choose iter so that accurate time 
measurement is possible

 This kernel is limited by data transfer performance for all memory levels on 
all architectures, ever!

(c) RRZE 2020 3Node-level Performance Engineering

The parallel vector triad benchmark
A “swiss army knife” for microbenchmarking

Prevents smarty-pants 
compilers from doing 
“clever” stuff

Required to get optimal 
code with Intel compiler!
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Schönauer triad on one CascadeLake core 2.5GHz

L1
32kB

L2
1MB

L3
28MB
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Schönauer triad on one CascadeLake core 2.5GHz

x7
 ?

What are the 
theoretical limits?



Every core runs its own, independent triad benchmark
 pure hardware probing, no impact from OpenMP overhead
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The throughput-parallel vector triad benchmark

#pragma omp parallel
{

double* al;
posix_memalign((void**) &al, ARRAY_ALIGNMENT, N * sizeof(double));

#pragma omp single
S = getTimeStamp();
for(int j=0; j<iter; j++) {

#pragma vector aligned
for (int i=0; i<N; i++) {

al[i] = b[i] + d[i] * c[i];
}
if (al[N-1] > 2000) printf("Ai = %f\n",al[N-1]);

}
#pragma omp single

E = getTimeStamp();
}

Every thread works on 
private copy of a!



Node-level Performance Engineering (c) RRZE 2020 7

Throughput vector triad on
one CascadeLake node (2.5 GHz)

Performance scales in 
L1 / L2 cache levels!

Drop stays at the same 
place for private caches!

L3 cache is not 
scalable

Adding another socket 
doubles the performance 
without changing the shape!

Socket 1

Socket 2
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Throughput vector triad on CascadeLake
(memory close-up)

Performance saturation 
in main memory!

Second sockets adds 
another memory interface!

Saturating L3 cache 
performance

Socket 1

Socket 2
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Attainable memory bandwidth (UPDATE!)

ECC=on

Cavium ThunderX2 (ARM)
DDR4-2400 memory NVIDIA P100 (Pascal)

Intel Broadwell (22 cores)
CoD enabled

AMD Naples (24 cores)

Single core 
does not 

saturate BW

BW saturation 
in NUMA 
domain

ECC=on

NVIDIA P100 (Pascal)
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The OpenMP-parallel vector triad benchmark

S = getTimeStamp();
#pragma omp parallel

{
for(int j = 0; j < iter; j++) {

#pragma omp for
#pragma vector aligned

for (int i=0; i<N; i++) {
a[i] = b[i] + d[i] * c[i];

}
if (a[N-1] > 2000) printf("Ai = %f\n",a[N-1]);

}
}
E = getTimeStamp();

OpenMP work sharing in the benchmark loop

Implicit barrier
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OpenMP vector triad on CascadeLake node
(2.2 GHz)

Sync overhead grows 
with number of threads

Impact on 
performance even 

with 1 thread



OpenMP performance issues 
on multicore

Synchronization (barrier) overhead



!$OMP PARALLEL …
…
!$OMP BARRIER
!$OMP DO
…
!$OMP ENDDO
!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!
 Next slide: Test OpenMP Barrier performance…
 for different compilers
 and different topologies:

 shared cache
 shared socket
 between sockets

 and different thread counts
 2 threads
 full domain (chip, socket, node)

Welcome to the multi-/many-core era
Synchronization of threads may be expensive!

Threads are synchronized at explicit AND 
implicit barriers. These are a main source of 
overhead in OpenMP programs.

Determine costs via simple benchmark
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Thread synchronization overhead on IvyBridge-EP 
Barrier overhead in CPU cycles

2 Threads Intel  16.0 GCC 5.3.0
Shared L3 599 425
SMT threads 612 423
Other socket 1486 1067

Full domain Intel 16.0 GCC 5.3.0
Socket (10 cores) 1934 1301
Node (20 cores) 4999 7783
Node +SMT 5981 9897

Strong topology 
dependence!

10 cores 10 cores

2.2 GHz

 Strong dependence on compiler, CPU and system environment!
 OMP_WAIT_POLICY=ACTIVE can make a big difference

Overhead grows 
with thread count
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Scaling of barrier cost

Comparison of barrier synchronization cost 
with increasing number of threads

1. 2x Haswell 14-core CoD mode
2. Optimistic measurements

(repeated 1000s of times)
3. No impact from previous

activity in cache

4. Ideal scaling: logarithmic

Intel 17.0.4 gcc 6.2.0
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 Microbenchmarks can yield surprisingly deep insights

 Affinity matters!
 Almost all performance properties depend on the position of

 Data
 Threads/processes

 Consequences
 Know where your threads are running
 Know where your data is (see later for that)

 Bandwidth bottlenecks are ubiquitous
 Synchronization overhead may be an issue
 … and also depends on affinity!
 Many-core poses new challenges in terms of synchronization
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Conclusions from the microbenchmarks
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