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Microbenchmarking for architectural exploration

Probing of the memory hierarchy

Saturation effects

OpenMP barrier overhead




Motivation for Microbenchmarking as a tool —==

= |solate small kernels to:
= Separate influences
= Determine specific machine capabilities (light speed)
= Gain experience about software/hardware interaction
= Determine programming model overhead

= Possibilities:
= Readymade benchmark collections (epcc OpenMP, IMB)
= STREAM benchmark for memory bandwidth
= Implement own benchmarks (difficult and error prone)

= l1kwid-bench tool: Offers collection of benchmarks and framework
for rapid development of assembly code kernels
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The parallel vector triad benchmark —
A “swiss army knife” for microbenchmarking
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double striad seq(double* restrict a, double* restrict b,
double* restrict c, double* restrict d, Int N, int i1ter) {

double S, E;

Required to get optimal
code with Intel compiler!

for(int J = 0; J <1

#pragma vector aligned
for (int 1 =

a[fi1] = b[

Prevents smarty-pants
compilers from doing
“clever” stuff

}
1T (a[N-1] > 2000) printf('Ar = %P\n",a[N-1]);

+
return E-S; }

= Report performance for different N, choose 1ter so that accurate time

measurement is possible
= This kernel is limited by data transfer performance for all memory levels on
all architectures, ever!
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Schonauer triad on one CascadelLake core 2.5GHz
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Schoénauer triad on one CascadelLake core 2.5GHz =£E Sugpe
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The throughput-parallel vector triad benchmark = fpe

Every core runs its own, independent triad benchmark
—> pure hardware probing, no impact from OpenMP overhead

#pragma omp parallel
{
double* al;
posix_memalign((void**) &al, ARRAY_ALIGNMENT, N * sizeof(double));
#pragma omp single

Every thread works on
private copy of a!

for(int j=0; j<iter; j++)
#pragma vector aligned
for (int i=0:7"i<N; i++) {
al[i] = b[i] + d[i] * c[i];
+
1T (al[N-1] > 2000) printf(""A1 = %¥RA\n",al[N-1]);

}

#pragma omp single

}
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Throughput vector triad on ==
one CascadelLake node (2.5 GHz) ==
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Throughput vector triad on CascadelLake ——
(memory close-up)
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Attainable memory bandwidth (UPDATE!) =itz
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The OpenMP-parallel vector triad benchmark =

OpenMP work sharing in the benchmark loop

#pragma omp parallel
{
for(int J = 0; J < i1ter; j++) {
#pragma omp for
#pragma vector aligned
for (int 1=0; I<N; 1++) {
ali] = b[i] + d[1] * c[1];

if (a[N=t}-> 2000) printf(’Ai = %F\n",a[N-1]):

Implicit barrier
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OpenMP vector triad on CascadelLake node ——
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Synchronization (barrier) overhead




Welcome to the multi-/many-core era ——
Synchronization of threads may be expensive!
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1$OMP PARALLEL .. _ o
Threads are synchronized at explicit AND

implicit barriers. These are a main source of

130MP BARRIER overhead in OpenMP programs.

1$S0MP DO : L

Determine costs via simple benchmark
1$OMP ENDDO
1$0MP END PARALLEL

On x86 systems there is no hardware support for synchronization!
= Next slide: Test OpenMP Barrier performance...
= for different compilers

= and different topologies:
= shared cache
= shared socket
= between sockets

= and different thread counts
= 2 threads
= full domain (chip, socket, node)
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Thread synchronization overhead on IvyBridge-EP ==
Barrier overhead in CPU cycles
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UN

2 Threads Intel 16.0 GCC5.3.0 9 2 GHz
Shared L3 599 495 ¥ 10cores ¥ B 10coes [F
SMT threads 612 423 {lmff"r """"" \ jlmffﬂr """"" f;
Other socket 1486 1067
~— /
Strong topology
dependence!
Full domain Intel 16.0 GCC5.3.0
Socket (10 cores) 1934 1301
Overhead grows

Node (20 cores) 4999 7783 with thread count
Node +SMT 5981 9897

Strong dependence on compiler, CPU and system environment!
OMP_WAIT POLICY=ACTIVE can make a big difference
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Scaling of barrier cost =

Comparison of barrier synchronization cost
with increasing number of threads
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Conclusions from the microbenchmarks Ao

= Microbenchmarks can yield surprisingly deep insights

= Affinity matters!

= Almost all performance properties depend on the position of
- Data
- Threads/processes

= Consequences
- Know where your threads are running
- Know where your data is (see later for that)

= Bandwidth bottlenecks are ubiquitous

= Synchronization overhead may be an issue
= ... and also depends on affinity!
= Many-core poses new challenges in terms of synchronization
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