FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

“Simple” performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

4 7
y ¥ 1
f Al “
V4 f 1
2 | r) f
p .y

R.W. Hockney and 1.J. Curington: f,,: A parameter to characterize memory and communication bottlenecks.
Parallel Computing 10, 277-286 (1989).

W. Schonauer: . -Self-edition (2000)

S. Williams: . UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/%7Erx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

A simple performance model for loops =

Simplistic view of the hardware:

Execution units
max. performance

Data path,
bandwidth bg
- Unit: byte/s

Data source/sink

Simplistic view of the software:

I may be multiple levels
do 1 = 1,<sufficient>
<complicated stuff doing

causing
transfer>

enddo

Computational intensity

=2
V

- Unit: flop/byte

Roofline Model

(c) RRZE 2020

FRIEDRICH-ALEXANDER

Naive Roofline Model =

How fast can tasks be processed? P [flop/s]

The bottleneck is either
The execution of work: Ppeak [flop/s]

The data path: I bg [flop/byte x byte/s]

P = min(P a1, [- bs)

This is the “Naive Roofline Model”
High intensity: P limited by execution
Low intensity: P limited by data transfer

peak

Performance

0%

Best use of resources

Roofline is an “optimistic” model —
(“light speed”) Intensity

Roofline Model (c) RRZE 2020

FRIEDRICH-ALEXANDER
T,

The Roofline Model in computing — Basics —=

Apply the naive Roofline model in practice

Machine parameter #1. Peak performance: Ppeak E]
Machine parameter #2: Memory bandwidth: bs E
Code characteristic: Computational intensity: E]
8 K |
MaChIne propertIeS: F R L LR R Ppeak
P =2.5GF/s
L N double s=0, a[];
peak S ‘% for(1=0; i<N; ++i) {
0 = i
L N s = s + a[i] * a[i1];}
GB ~=
bS = 10? & 05 i i
_2F _ F
ol i | I_|83 = 0.25%/5
| | | i: | |

b —

App|icati0n property: [/ ve4 132 116 18 1/4 12 1

Computational intensity I [F/B]

Roofline Model (c) RRZE 2020 4

FRIEDRICH-ALEXANDER

Prerequisites for the Roofline Model Lt

The roofline formalism is based on some (crucial) prerequisites:
There is a clear concept of “work” vs. “traffic”
“work” = flops, updates, iterations...
“traffic” = required data to do “work”

Machine input parameters: Peak Performance and Peak Bandwidth
Application/kernel is expected to achieve is limits theoretically

Assumptions behind the model:

Data transfer and core execution overlap perfectly!
Either the limit is core execution or it is data transfer

Slowest limiting factor “wins”; all others are assumed
to have no impact

Latency effects are ignored, i.e., perfect streaming mode .
“Steady-state” code execution (no wind-up/-down effects)

Roofline Model (c) RRZE 2020

The Roofline Model in computing — Basics

FRIEDRICH-ALEXANDER

Compare capabilities of different machines:

_Il III Iillllll

_ memory-bound

=
-

___3D7ptstencil

pea
_s=sta(i)ta(i) & dMVM

100}

" on all architectures

L= NVIDIA P100

Peak Performance P [GF/s]

i = 2x Intel Haswell

Intel Knights Landing

10F .
:ll | i |] :l |] || |

|cc-mpute-bc-und .

lon all architectures |

Assuming double
precision —
for single precision:
Ppeak 22 Ppeak

0.1 |

Computational Intensity [/ [F/B]

10

Roofline always provides upper bound — but is it realistic?

If code is not able to reach this limit (e.g., contains add operations
only), machine parameters need to be redefined (€.9., Ppeak 2 Ppear/2)

Roofline Model

(c) RRZE 2020

FRIEDRICH-ALEXANDER

A refined Roofline Model ==

P..ox = Applicable peak performance of a loop, assuming that data
comes from the level 1 cache (this is not necessarily P
- e.0., P =176 GFlop/s

peak)

| = Computational intensity (“work” per byte transferred) over the
slowest data path utilized (code balance B, =11)
- e.0.,1 =0.167 Flop/Byte - B = 6 Byte/Flop

bs = Applicable (saturated) peak bandwidth of the slowest data path
utilized (measure attainable bandwidth using, e.g. STREAM)
- e.g., bg = 56 GByte/s

Expected performance:

/ [Byte/s]
bs

P = min(Py.x, I - bg) = min (Pm

ax’ B C [Byte/Flop]

Roofline Model (c) RRZE 2020

Refined Roofline model: graphical representation 5222 gmse

Multiple ceilings may apply

= Different bandwidths /data paths
- different inclined ceilings

= Different P,
—> different flat ceilings

In fact, P, .,
from code analysis; generic
ceilings are usually impossible
to attain

should always come

10

—_
(@]
N

Performance P [Gflop/s]

—
o

Computational intensity / [flop/byte]

1 LI IIII 1 1 LI IIII 1 1 LI IIII 1 1 1
i peak 1
’ ."’
¢ e
3 N7 : =
- ©, no SIMD 1
- T A A]
[N]
D Sy A N —
- f-’ - no ADD, no SIMD 1
/./ ‘/°<3$
-, /0*?\ =
"]
n ./, *‘Qﬁ n
| l/I | IIII | |] 1 IIII | |] 1 IIII | | |
10 10° 10"

Roofline Model

(c) RRZE 2020

Estimating per-core P, 0n a given architecture

max

Haswell/Broadwell port scheduler model:

Instruction reorder
buffer

//\\

ALU ALU LOAD LOAD STORE ALU ALU AGU

'FADD 32bT BZbT 32b¢ JUMP

Retire 4 yops

Haswell/Broadwell

Roofline Model (c) RRZE 2020

FRIEDRICH-ALEXANDER

Example: P, of vector triad on Haswell Lt

maxX

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {
A[i] = B[i] + C[i] * D[i];

}

Minimum number of cycles to process one AVX-vectorized iteration
(equivalent to 4 scalar iterations) on one core?

-—> Assuming full throughput:

Cycle 1. LOAD + LOAD + STORE
Cycle 2: LOAD + LOAD + FMA + FMA
Cycle 3: LOAD + LOAD + STORE Answer: 1.5 cycles

Roofline Model (c) RRZE 2020

10

Example: P, of vector triad on Haswell@2.3 =i

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {
A[i] = B[i] + C[i] * D[i];

}

What is the performance in GFlops/s per core and the bandwidth in
GBytes/s?

.) 120007;; - I—

One AVX iteration (1.5 cycles) does 4 x 2 = 8 flops: : See also :

10000 http://tiny.cc/IntelPort7 |

8 flops Gflops E oo .

23-10% cy/s - o> _ 12 27 0P _
1.5cy S E

Gflops bytes Gbyte o] 1

12.27 - 16 = 196 f N

S ﬂop S (L)ﬁ - 10 - ‘lllf — Hllllii) - 10 -

Roofline Model (c) RRZE 2020 11

http://tiny.cc/IntelPort7

P + bandwidth limitations: The vector triad e

maxX

Vector triad A(:)=B(:)+C(:)*D(:) on a 2.3 GHz 14-core Haswell chip

Consider full chip (14 cores):

Memory bandwidth: bg = 50 GB/s

Code balance (incl. write allocate):
B. = (4+1) Words / 2 Flops = 20 B/F > 1 = 0.05 F/B

=2 - bs=2.5 GF/s (0.5% of peak performance)

Poeak / COre = 36.8 Gflop/s ((8+8) Flops/cy x 2.3 GHz)
| core = 12.27 Gflop/s (see prev. slide)

Pmax

2> P = 14 *12.27 Gflop/s =172 Gflop/s (33% peak)

P = min(Pyax I - bs) = min(172,2.5) GFlop/s = 2.5 GFlop/s

Roofline Model (c) RRZE 2020

12

A not so simple Roofline example

FRIEDRICH-ALEXANDER

Performance [GFlop/s]

Example:

do 1=1,N; s=s+a(i1); enddo

in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

256
128

P = min(Pypax, [* bs)

| I
282 GF/s

P

]]
1/32 /8 14 12 1 2 4 V 16

Operational Intensity [Flops/Byte]

\flﬁ

P (worst loop code)

Machine peak
(ADD+MULT)
Out of reach for this

code

\ ADD peak

(best possible

\

code)
\ See
no SIMD architecture
intro

~——

3-cycle latency
per ADD if not
unrolled

./

| =1 flop / 4 byte (SP!)

Roofline Model

(c) RRZE 2020

13

FRIEDRICH-ALEXANDER

Tracking code optimizations in the Roofline Model =

Hitthe BW bottleneCkby I IIIIIII I I IIIIIII I ! IIIIIII I !

good serial code otk _
Increase intensity to make T]
better use of BW s | poak
o
bottleneck p=
S 10°F 4 E
Q N no SIMD 4
8 : " m I mEEEETSE -------------:
. . S |]
Increase intensity and go e |
from memory bound to % 1
core bound a 10°F -
Hit the core bottleneck by I |
gOOd Serial COde 1 Ll IIIII 1 1 L1 IIIII 1 | L1 IIIII 1 | 1
10" 10° 10’

Computational intensity / [flop/byte]

Roofline Model (c) RRZE 2020 14

Factors to consider in the Roofline Model =

Bandwidth-bound (simple case) Core-bound (may be complex)

1. Accurate traffic calculation (write- 1. Multiple bottlenecks: LD/ST,
allocate, strided access, ...) arithmetic, pipelines, SIMD,

2. Practical # theoretical BW limits execution ports

3. Saturation effects > consider full 2. Limitis linear in # of cores
socket only o

== Version 1

=
!
<
g

3 I 7
= Stencil Update | /s
g {"Jacobi") 7
L g | /s _
16 < 500F s _ |
a,
' - // | —
= ———
= ful #eores) R —
= <)
5] 3
g 5 g Ll
b= =]
& 1 & L—
0.5 05—
0.25 025
| | | |
/o4 1732 116 L/8 1/4 112 1 2 /e4 132 /16 /8 1/4 1/2 L 2
Computational intensity [F/B] Computational intensity [F/B]

Roofline Model (c) RRZE 2020

Shortcomings of the roofline model =

zng
meo
241

]
Ii
©
o

Saturation effects in multicore chips are not explained
Reason: “saturation assumption”
Cache line transfers and core execution do sometimes not overlap perfectly
It is not sufficient to measure single-core STREAM to make it work

Only increased “pressure” on the memory AC:)=B()+C(:)*D(E)

interface can saturate the bus '] ']

- need more cores! i
In-cache performance is not correctly
predicted

The ECM performance model gives more
Insight:

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring
performance and power properties of modern multicore chips
via simple machine models. Concurrency and Computation: i

Practice and Experience (2013). 5 —
DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908 |

,_.
=
I
|

Memory bandwidth [GB/s]

Roofline Model (c) RRZE 2020

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

	“Simple” performance modeling:�The Roofline Model
	A simple performance model for loops
	Naïve Roofline Model
	The Roofline Model in computing – Basics
	Prerequisites for the Roofline Model
	The Roofline Model in computing – Basics
	A refined Roofline Model
	Refined Roofline model: graphical representation
	Estimating per-core Pmax on a given architecture
	Example: Pmax of vector triad on Haswell
	Example: Pmax of vector triad on Haswell@2.3
	Pmax + bandwidth limitations: The vector triad
	A not so simple Roofline example
	Tracking code optimizations in the Roofline Model
	Factors to consider in the Roofline Model
	Shortcomings of the roofline model

