
“Simple” performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.
Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/%7Erx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Roofline Model (c) RRZE 2020 2

A simple performance model for loops

Simplistic view of the hardware:

! may be multiple levels
do i = 1,<sufficient>

<complicated stuff doing
N flops causing
V bytes of data transfer>

enddo

Execution units
max. performance

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

Data source/sink

Data path,
bandwidth 𝒃𝒃𝑺𝑺
 Unit: byte/s

Simplistic view of the software:

Computational intensity
𝑰𝑰 = 𝑵𝑵

𝑽𝑽
 Unit: flop/byte

Roofline Model (c) RRZE 2020 3

Naïve Roofline Model
How fast can tasks be processed? 𝑷𝑷 [flop/s]

The bottleneck is either
 The execution of work: 𝑃𝑃peak [flop/s]

 The data path: 𝐼𝐼 � 𝑏𝑏𝑆𝑆 [flop/byte x byte/s]

This is the “Naïve Roofline Model”
 High intensity: P limited by execution
 Low intensity: P limited by data transfer
 “Knee” at 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐼𝐼 � 𝑏𝑏𝑆𝑆:

Best use of resources
 Roofline is an “optimistic” model

(“light speed”)

𝑃𝑃 = min(𝑃𝑃peak, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

Intensity

Pe
rfo

rm
an

ce

Ppeak

Apply the naive Roofline model in practice

 Machine parameter #1: Peak performance: 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐹𝐹
𝑠𝑠

 Machine parameter #2: Memory bandwidth: 𝑏𝑏𝑆𝑆
𝐵𝐵
𝑠𝑠

 Code characteristic: Computational intensity: 𝐼𝐼 𝐹𝐹
𝐵𝐵

Roofline Model (c) RRZE 2020 4

The Roofline Model in computing – Basics

Machine properties:

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 4
GF
s

𝒃𝒃𝑺𝑺 = 10
GB
s

Application property: I

double s=0, a[];
for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

𝑃𝑃 = 2.5 GF/s

𝐼𝐼 = 2 𝐹𝐹
8 𝐵𝐵

= 0.25 ⁄𝐹𝐹 𝐵𝐵

Roofline Model (c) RRZE 2020 5

Prerequisites for the Roofline Model

 The roofline formalism is based on some (crucial) prerequisites:
 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…
 “traffic” = required data to do “work”

 Machine input parameters: Peak Performance and Peak Bandwidth
Application/kernel is expected to achieve is limits theoretically

 Assumptions behind the model:
 Data transfer and core execution overlap perfectly!

 Either the limit is core execution or it is data transfer
 Slowest limiting factor “wins”; all others are assumed

to have no impact
 Latency effects are ignored, i.e., perfect streaming mode
 “Steady-state” code execution (no wind-up/-down effects)

Roofline Model (c) RRZE 2020 6

The Roofline Model in computing – Basics

Compare capabilities of different machines:

 Roofline always provides upper bound – but is it realistic?
 If code is not able to reach this limit (e.g., contains add operations

only), machine parameters need to be redefined (e.g., 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/2)

Assuming double
precision –

for single precision:
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  2 ⋅ 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Roofline Model (c) RRZE 2020 7

A refined Roofline Model

1. Pmax = Applicable peak performance of a loop, assuming that data
comes from the level 1 cache (this is not necessarily Ppeak)
 e.g., Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the
slowest data path utilized (code balance BC = I -1)
 e.g., I = 0.167 Flop/Byte  BC = 6 Byte/Flop

3. bS = Applicable (saturated) peak bandwidth of the slowest data path
utilized (measure attainable bandwidth using, e.g. STREAM)
 e.g., bS = 56 GByte/s

Expected performance:

𝑃𝑃 = min 𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆 = min 𝑃𝑃max,
𝑏𝑏𝑆𝑆
𝐵𝐵𝐶𝐶

[Byte/s]

[Byte/Flop]

Roofline Model (c) RRZE 2020 8

Refined Roofline model: graphical representation

Multiple ceilings may apply

 Different bandwidths /data paths
 different inclined ceilings

 Different Pmax
 different flat ceilings

In fact, Pmax should always come
from code analysis; generic
ceilings are usually impossible
to attain

Roofline Model (c) RRZE 2020 9

Estimating per-core Pmax on a given architecture

Haswell/Broadwell port scheduler model:

Port 0 Port 1 Port 5Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 μops

32b 32b 32b

AGU

Haswell/Broadwell

FADD

ALU

JUMP

Instruction reorder
buffer

Roofline Model (c) RRZE 2020 10

Example: Pmax of vector triad on Haswell

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];
}

Minimum number of cycles to process one AVX-vectorized iteration
(equivalent to 4 scalar iterations) on one core?

 Assuming full throughput:

Cycle 1: LOAD + LOAD + STORE
Cycle 2: LOAD + LOAD + FMA + FMA
Cycle 3: LOAD + LOAD + STORE Answer: 1.5 cycles

Roofline Model (c) RRZE 2020 11

Example: Pmax of vector triad on Haswell@2.3

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];
}

What is the performance in GFlops/s per core and the bandwidth in
GBytes/s?

One AVX iteration (1.5 cycles) does 4 x 2 = 8 flops:

2.3 � 109 cy/s �
8 flops
1.5 cy = 𝟏𝟏𝟏𝟏.𝟐𝟐𝟐𝟐

Gflops
s

12.27
Gflops

s � 16
bytes
flop = 196

Gbyte
s

See also
http://tiny.cc/IntelPort7

http://tiny.cc/IntelPort7

Roofline Model (c) RRZE 2020 12

Pmax + bandwidth limitations: The vector triad

Vector triad A(:)=B(:)+C(:)*D(:) on a 2.3 GHz 14-core Haswell chip

Consider full chip (14 cores):

Memory bandwidth: bS = 50 GB/s
Code balance (incl. write allocate):
Bc = (4+1) Words / 2 Flops = 20 B/F  I = 0.05 F/B

 I ∙ bS = 2.5 GF/s (0.5% of peak performance)

Ppeak / core = 36.8 Gflop/s ((8+8) Flops/cy x 2.3 GHz)
Pmax / core = 12.27 Gflop/s (see prev. slide)

 Pmax = 14 * 12.27 Gflop/s =172 Gflop/s (33% peak)

𝑃𝑃 = min 𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆 = min 172,2.5 ⁄GFlop s = 2.5 ⁄GFlop s

Roofline Model (c) RRZE 2020 13

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo
in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

ADD peak
(best possible
code)

no SIMD

3-cycle latency
per ADD if not
unrolled

P (worst loop code)

𝑃𝑃 = min(𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

See
architecture
intro

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak
(ADD+MULT)
Out of reach for this
code

P
(better loop code)

Roofline Model (c) RRZE 2020 14

Tracking code optimizations in the Roofline Model

1. Hit the BW bottleneck by
good serial code
(e.g., Ninja C++  Fortran)

2. Increase intensity to make
better use of BW
bottleneck
(e.g., spatial loop blocking
[see later])

3. Increase intensity and go
from memory bound to
core bound
(e.g., temporal blocking)

4. Hit the core bottleneck by
good serial code
(e.g., -fno-alias [see
later])

Roofline Model (c) RRZE 2020 15

Factors to consider in the Roofline Model

Bandwidth-bound (simple case)
1. Accurate traffic calculation (write-

allocate, strided access, …)
2. Practical ≠ theoretical BW limits
3. Saturation effects  consider full

socket only

Core-bound (may be complex)
1. Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,
execution ports

2. Limit is linear in # of cores

Roofline Model (c) RRZE 2020 16

Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained
 Reason: “saturation assumption”
 Cache line transfers and core execution do sometimes not overlap perfectly
 It is not sufficient to measure single-core STREAM to make it work
 Only increased “pressure” on the memory

interface can saturate the bus
 need more cores!

 In-cache performance is not correctly
predicted

 The ECM performance model gives more
insight:

A(:)=B(:)+C(:)*D(:)

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring
performance and power properties of modern multicore chips
via simple machine models. Concurrency and Computation:
Practice and Experience (2013).
DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

	“Simple” performance modeling:�The Roofline Model
	A simple performance model for loops
	Naïve Roofline Model
	The Roofline Model in computing – Basics
	Prerequisites for the Roofline Model
	The Roofline Model in computing – Basics
	A refined Roofline Model
	Refined Roofline model: graphical representation
	Estimating per-core Pmax on a given architecture
	Example: Pmax of vector triad on Haswell
	Example: Pmax of vector triad on Haswell@2.3
	Pmax + bandwidth limitations: The vector triad
	A not so simple Roofline example
	Tracking code optimizations in the Roofline Model
	Factors to consider in the Roofline Model
	Shortcomings of the roofline model

