
Performance analysis with hardware metrics

likwid-perfctr

Node-Level Performance Engineering (c) RRZE 2020 2

Probing performance behavior
 How do we find out about the performance properties and

requirements of a parallel code?
Profiling via advanced tools is often overkill

 A coarse overview is often sufficient: likwid-perfctr

• Simple end-to-end measurement of hardware
performance metrics

Operating modes:
 Wrapper
 Stethoscope
 Timeline
 Marker API

Preconfigured and extensible
metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
CLOCK: Clock frequency of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio
ENERGY: Power and energy consumption

Node-Level Performance Engineering (c) RRZE 2020 3

Best practices for Performance profiling
Focus on resource utilization and instruction decomposition!
Metrics to measure:
 Operation throughput (Flops/s)
 Overall instruction throughput (CPI)
 Instruction breakdown:
 FP instructions
 loads and stores
 branch instructions
 other instructions

 Instruction breakdown to SIMD
width (scalar, SSE, AVX, AVX512
for X86). (only arithmetic instruction
on most architectures)

 Data volumes and bandwidths to
main memory (GB and GB/s)

 Data volumes and bandwidth to
different cache levels (GB and
GB/s)

Useful diagnostic metrics are:
 Clock frequency (GHz)
 Power (W)

All above metrics can be acquired using performance groups:
MEM_DP, MEM_SP, BRANCH, DATA, L2, L3

Node-Level Performance Engineering (c) RRZE 2020 4

likwid-perfctr wrapper mode

$ likwid-perfctr –g L2 –C S1:0-3 ./a.out
--
CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz […]
--
<<<< PROGRAM OUTPUT >>>>
--
Group 1: L2
+-----------------------+---------+------------+------------+------------+------------+
| Event | Counter | Core 14 | Core 15 | Core 16 | Core 17 |
+-----------------------+---------+------------+------------+------------+------------+
INSTR_RETIRED_ANY	FIXC0	1298031144	1965945005	1854182290	1862521357
CPU_CLK_UNHALTED_CORE	FIXC1	2353698512	2894134935	2894645261	2895023739
CPU_CLK_UNHALTED_REF	FIXC2	2057044629	2534405765	2535218217	2535560434
L1D_REPLACEMENT	PMC0	212900444	200544877	200389272	200387671
L2_TRANS_L1D_WB	PMC1	112464863	99931184	99982371	99976697
ICACHE_MISSES	PMC2	21265	26233	12646	12363
+-----------------------+---------+------------+------------+------------+------------+					
[… statistics output omitted …]					
+--------------------------------+------------+------------+------------+------------+					
Metric	Core 14	Core 15	Core 16	Core 17	
+--------------------------------+------------+------------+------------+------------+					
Runtime (RDTSC) [s]	1.1314	1.1314	1.1314	1.1314	
Runtime unhalted [s]	1.0234	1.2583	1.2586	1.2587	
Clock [MHz]	2631.6699	2626.4367	2626.0579	2626.0468	
CPI	1.8133	1.4721	1.5611	1.5544	
L2D load bandwidth [MBytes/s]	12042.7388	11343.8446	11335.0428	11334.9523	
L2D load data volume [GBytes]	13.6256	12.8349	12.8249	12.8248	
L2D evict bandwidth [MBytes/s]	6361.5883	5652.6192	5655.5146	5655.1937	
L2D evict data volume [GBytes]	7.1978	6.3956	6.3989	6.3985	
L2 bandwidth [MBytes/s]	18405.5299	16997.9477	16991.2728	16990.8453	
L2 data volume [GBytes]	20.8247	19.2321	19.2246	19.2241	
+--------------------------------+------------+------------+------------+------------+

Always
measured for

Intel CPUs

Derived
metrics

Configured metrics
(this group)

Node-Level Performance Engineering (c) RRZE 2020 5

likwid-perfctr stethoscope mode

 likwid-perfctr counts events on cores; it has no notion of
what kind of code is running (if any)

This allows you to “listen” to what is currently happening,
without any overhead:

$likwid-perfctr -c N:0-11 -g FLOPS_DP -S 10s

 It can be used as cluster/server monitoring tool

 A frequent use is to measure a certain part of a long
running parallel application from outside

Node-Level Performance Engineering (c) RRZE 2020 6

Using Roofline for monitoring “live” jobs on a cluster
Based on measured BW and Flop/s data via likwid-perfctr

Where are the “good”
and the “bad” jobs in
this diagram?

Intensity [flop/byte]

Pe
rfo

rm
an

ce
 [G

flo
p/

s]

Node-Level Performance Engineering (c) RRZE 2020 7

likwid-perfctr marker API

 The marker API can restrict measurements to code regions
 The API only turns counters on/off. The configuration of the counters

is still done by likwid-perfctr
 Multiple named regions support, accumulation over multiple calls
 Inclusive and overlapping regions allowed
#include <likwid-marker.h>
. . .
LIKWID_MARKER_INIT; // must be called from serial region

. . .
LIKWID_MARKER_START(“Compute”); // call markers for each thread
. . .
LIKWID_MARKER_STOP(“Compute”);
. . .
LIKWID_MARKER_START(“Postprocess”);
. . .
LIKWID_MARKER_STOP(“Postprocess”);
. . .

LIKWID_MARKER_CLOSE; // must be called from serial region

 Activate macros with -DLIKWID_PERFMON
 Run likwid-perfctr with –m switch to

enable marking
 See https://github.com/RRZE-

HPC/likwid/wiki/TutorialMarkerF90 for
Fortran example

Before LIKWID 5
use likwid.h

https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90

Node-Level Performance Engineering (c) RRZE 2020 8

Compiling, linking, and running with marker API

Compile:
cc -I /path/to/likwid.h -DLIKWID_PERFMON -c program.c

Link:
cc -L /path/to/liblikwid program.o -llikwid

Run:
likwid-perfctr -C <MASK> -g <GROUP> -m ./a.out

One separate block of output for every marked region
Caveat: Marker API can cause overhead; do not call too

frequently!

Node-Level Performance Engineering (c) RRZE 2020 9

Summary of hardware performance monitoring

 Useful only if you know what you are looking for
 PM bears potential of acquiring massive amounts of data for

nothing!
 Resource-based metrics are most useful

 Cache lines transferred, work executed, loads/stores, cycles
 Instructions, CPI, cache misses may be misleading

 Caveat: Processor work != user work
 Waiting time in libraries (OpenMP, MPI) may cause lots of

instructions
 distorted application characteristic

 Another very useful application of PM: validating performance
models!
 Roofline is data centric measure data volume through memory

hierarchy

	Performance analysis with hardware metrics
	Probing performance behavior
	Best practices for Performance profiling
	likwid-perfctr wrapper mode
	likwid-perfctr stethoscope mode
	Using Roofline for monitoring “live” jobs on a cluster�Based on measured BW and Flop/s data via likwid-perfctr
	likwid-perfctr marker API
	Compiling, linking, and running with marker API
	Summary of hardware performance monitoring

