
Performance analysis with hardware metrics

likwid-perfctr

Node-Level Performance Engineering (c) RRZE 2020 2

Probing performance behavior
 How do we find out about the performance properties and

requirements of a parallel code?
Profiling via advanced tools is often overkill

 A coarse overview is often sufficient: likwid-perfctr

• Simple end-to-end measurement of hardware
performance metrics

Operating modes:
 Wrapper
 Stethoscope
 Timeline
 Marker API

Preconfigured and extensible
metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
CLOCK: Clock frequency of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio
ENERGY: Power and energy consumption

Node-Level Performance Engineering (c) RRZE 2020 3

Best practices for Performance profiling
Focus on resource utilization and instruction decomposition!
Metrics to measure:
 Operation throughput (Flops/s)
 Overall instruction throughput (CPI)
 Instruction breakdown:
 FP instructions
 loads and stores
 branch instructions
 other instructions

 Instruction breakdown to SIMD
width (scalar, SSE, AVX, AVX512
for X86). (only arithmetic instruction
on most architectures)

 Data volumes and bandwidths to
main memory (GB and GB/s)

 Data volumes and bandwidth to
different cache levels (GB and
GB/s)

Useful diagnostic metrics are:
 Clock frequency (GHz)
 Power (W)

All above metrics can be acquired using performance groups:
MEM_DP, MEM_SP, BRANCH, DATA, L2, L3

Node-Level Performance Engineering (c) RRZE 2020 4

likwid-perfctr wrapper mode

$ likwid-perfctr –g L2 –C S1:0-3 ./a.out
--
CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz […]
--
<<<< PROGRAM OUTPUT >>>>
--
Group 1: L2
+-----------------------+---------+------------+------------+------------+------------+
| Event | Counter | Core 14 | Core 15 | Core 16 | Core 17 |
+-----------------------+---------+------------+------------+------------+------------+
INSTR_RETIRED_ANY	FIXC0	1298031144	1965945005	1854182290	1862521357
CPU_CLK_UNHALTED_CORE	FIXC1	2353698512	2894134935	2894645261	2895023739
CPU_CLK_UNHALTED_REF	FIXC2	2057044629	2534405765	2535218217	2535560434
L1D_REPLACEMENT	PMC0	212900444	200544877	200389272	200387671
L2_TRANS_L1D_WB	PMC1	112464863	99931184	99982371	99976697
ICACHE_MISSES	PMC2	21265	26233	12646	12363
+-----------------------+---------+------------+------------+------------+------------+					
[… statistics output omitted …]					
+--------------------------------+------------+------------+------------+------------+					
Metric	Core 14	Core 15	Core 16	Core 17	
+--------------------------------+------------+------------+------------+------------+					
Runtime (RDTSC) [s]	1.1314	1.1314	1.1314	1.1314	
Runtime unhalted [s]	1.0234	1.2583	1.2586	1.2587	
Clock [MHz]	2631.6699	2626.4367	2626.0579	2626.0468	
CPI	1.8133	1.4721	1.5611	1.5544	
L2D load bandwidth [MBytes/s]	12042.7388	11343.8446	11335.0428	11334.9523	
L2D load data volume [GBytes]	13.6256	12.8349	12.8249	12.8248	
L2D evict bandwidth [MBytes/s]	6361.5883	5652.6192	5655.5146	5655.1937	
L2D evict data volume [GBytes]	7.1978	6.3956	6.3989	6.3985	
L2 bandwidth [MBytes/s]	18405.5299	16997.9477	16991.2728	16990.8453	
L2 data volume [GBytes]	20.8247	19.2321	19.2246	19.2241	
+--------------------------------+------------+------------+------------+------------+

Always
measured for

Intel CPUs

Derived
metrics

Configured metrics
(this group)

Node-Level Performance Engineering (c) RRZE 2020 5

likwid-perfctr stethoscope mode

 likwid-perfctr counts events on cores; it has no notion of
what kind of code is running (if any)

This allows you to “listen” to what is currently happening,
without any overhead:

$likwid-perfctr -c N:0-11 -g FLOPS_DP -S 10s

 It can be used as cluster/server monitoring tool

 A frequent use is to measure a certain part of a long
running parallel application from outside

Node-Level Performance Engineering (c) RRZE 2020 6

Using Roofline for monitoring “live” jobs on a cluster
Based on measured BW and Flop/s data via likwid-perfctr

Where are the “good”
and the “bad” jobs in
this diagram?

Intensity [flop/byte]

Pe
rfo

rm
an

ce
 [G

flo
p/

s]

Node-Level Performance Engineering (c) RRZE 2020 7

likwid-perfctr marker API

 The marker API can restrict measurements to code regions
 The API only turns counters on/off. The configuration of the counters

is still done by likwid-perfctr
 Multiple named regions support, accumulation over multiple calls
 Inclusive and overlapping regions allowed
#include <likwid-marker.h>
. . .
LIKWID_MARKER_INIT; // must be called from serial region

. . .
LIKWID_MARKER_START(“Compute”); // call markers for each thread
. . .
LIKWID_MARKER_STOP(“Compute”);
. . .
LIKWID_MARKER_START(“Postprocess”);
. . .
LIKWID_MARKER_STOP(“Postprocess”);
. . .

LIKWID_MARKER_CLOSE; // must be called from serial region

 Activate macros with -DLIKWID_PERFMON
 Run likwid-perfctr with –m switch to

enable marking
 See https://github.com/RRZE-

HPC/likwid/wiki/TutorialMarkerF90 for
Fortran example

Before LIKWID 5
use likwid.h

https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90

Node-Level Performance Engineering (c) RRZE 2020 8

Compiling, linking, and running with marker API

Compile:
cc -I /path/to/likwid.h -DLIKWID_PERFMON -c program.c

Link:
cc -L /path/to/liblikwid program.o -llikwid

Run:
likwid-perfctr -C <MASK> -g <GROUP> -m ./a.out

One separate block of output for every marked region
Caveat: Marker API can cause overhead; do not call too

frequently!

Node-Level Performance Engineering (c) RRZE 2020 9

Summary of hardware performance monitoring

 Useful only if you know what you are looking for
 PM bears potential of acquiring massive amounts of data for

nothing!
 Resource-based metrics are most useful

 Cache lines transferred, work executed, loads/stores, cycles
 Instructions, CPI, cache misses may be misleading

 Caveat: Processor work != user work
 Waiting time in libraries (OpenMP, MPI) may cause lots of

instructions
  distorted application characteristic

 Another very useful application of PM: validating performance
models!
 Roofline is data centric  measure data volume through memory

hierarchy

	Performance analysis with hardware metrics
	Probing performance behavior
	Best practices for Performance profiling
	likwid-perfctr wrapper mode
	likwid-perfctr stethoscope mode
	Using Roofline for monitoring “live” jobs on a cluster�Based on measured BW and Flop/s data via likwid-perfctr
	likwid-perfctr marker API
	Compiling, linking, and running with marker API
	Summary of hardware performance monitoring

