
Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking

 Stencil schemes frequently occur in PDE solvers on regular lattice
structures

 The regular access structure allows for matrix-free coding

 Complexity of implementation and performance depends on
 update scheme, e.g. Jacobi-type, Gauss-Seidel-type, …
 spatial extent, e.g. 7-pt or 25-pt in 3D,…

(c) RRZE 2020Node-Level Performance Engineering

Stencil schemes

do iter = 1, max_iterations

perform sweep over regular grid: y(:)  x(:)

swap y  x

enddo
y x

2

Node-Level Performance Engineering (c) RRZE 2020

Jacobi-type 5-pt stencil in 2D

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo

j

k

sw
ee

p

Lattice site
Update
(LUP)

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice site Updates per second” [LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)

3

Naive balance (incl. write allocate):

x(:,:) : 3 RD +
y(:,:) : 1 WR + 1 RD

 BC = 5 Words / LUP = 40 B / LUP (assuming double precision)

Node-Level Performance Engineering (c) RRZE 2020

Jacobi 5-pt stencil in 2D: data transfer analysis

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo

S
W
E
E
P

RD+WR y(j,k)
(incl. write allocate)

RD x(j+1,k)

Available in cache
(used 2 updates before)

RD x(j,k+1)RD x(j,k-1)

4

(j-1,k) (j,k) (j+1,k)

(j,k-1)

(j,k+1)

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking

Node-Level Performance Engineering (c) RRZE 2020

Analyzing the data flow

cached
Worst case: Cache not large enough to hold 3 layers (rows) of grid
(assume “Least Recently Used” replacement strategy)

j

k

x(0:jmax+1,0:kmax+1)

H
al

o
ce

lls
H

al
o

ce
lls

miss

miss

miss

hit

miss

miss

miss

hit

6

Node-Level Performance Engineering (c) RRZE 2020

Analyzing the data flow

j

k

Worst case: Cache not large enough to hold 3 layers (rows) of grid
(+assume „Least Recently Used“ replacement strategy)

x(0:jmax+1,0:kmax+1)

miss

miss

miss

hit

miss

miss

miss

hit

7

Node-Level Performance Engineering (c) RRZE 2020

Analyzing the data flow

Reduce inner (j-)
loop dimension
successively

Best case: 3
“layers” of grid fit
into the cache!

j

k

x(0:jmax2+1,0:kmax+1)

x(0:jmax1+1,0:kmax+1)

miss

miss
miss

hit

miss

miss
miss

hit

miss

hit
hit

hit

8

Node-Level Performance Engineering (c) RRZE 2020

Analyzing the data flow: Layer condition

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo 3 * jmax * 8B < CacheSize/2
“Layer condition”

double
precision

3 rows of
jmax Safety margin

(Rule of thumb)

Layer condition:
• Does not depend on outer loop length (kmax)
• No strict guideline (cache associativity – data traffic for y not included)
• Needs to be adapted for other stencils (e.g., 3D 7-pt stencil)

9

Node-Level Performance Engineering (c) RRZE 2020

Jacobi 5-pt stencil in 2D: Single core performance

jmax=kmax jmax*kmax = const

L3
 C

ac
he

Intel Xeon E5-2690 v2
(“IvyBridge”@3 GHz)

~24 B / LUP ~40 B / LUP

Code balance (𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)
measured with likwid-perfctr

Intel Compiler
ifort V13.1

jmax

Questions:

1. How to achieve
24 B/LUP also
for large jmax?

2. How to sustain
>600 MLUP/s for
jmax > 104 ?

11

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking

Why 24 byte/LUP?
 High-level view of sweep: read x(:), write y(:)
 if maximum reuse with sweep is possible, 24 byte/LUP should be
achievable

But how to establish the layer condition for all domain sizes?
 Idea: Spatial blocking

 Reuse elements of x(:) as long as they stay in cache
 Main idea: Order of site updates does not matter
 “reduce inner dimension” by cutting the inner loop short

(c) RRZE 2020Node-Level Performance Engineering

Fulfilling the layer condition

13

Node-Level Performance Engineering (c) RRZE 2020

Idea: Enable data reuse by blocking!

Split
domain into
subblocks:

e.g. block
size = 5

14

Node-Level Performance Engineering (c) RRZE 2020

Establish the layer condition by blocking

Additional data
transfers (overhead)
at block boundaries!

15

 “Spatial Blocking” of j-loop:

 Determine for given CacheSize an appropriate jblock value:

(c) RRZE 2020Node-Level Performance Engineering

Fulfilling the layer condition

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock
do k=1,kmax
do j= jb, (jb+jblock-1) ! Length of inner loop: jblock
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo
enddo

New layer condition (blocking)
3 * jblock * 8B < CacheSize/2

jblock < CacheSize / 48 B

16

(c) RRZE 2020Node-Level Performance Engineering

Establish layer condition by spatial blocking

jmax=kmax jmax*kmax = const

L3
 C

ac
he

L1: 32 KB
L2: 256 KB
L3: 25 MBjmax

Which cache to block for?

Intel Xeon E5-2690 v2
(“IvyBridge”@3 GHz)

Intel Compiler
ifort V13.1

jblock < CacheSize / 48 B

L2: CS=256 KB
jblock=min(jmax,5333)

L3: CS=25 MB
jblock=min(jmax,533333)

17

Node-Level Performance Engineering (c) RRZE 2020

Validating the hypothesis: Measure memory code balance

jmax

Measured main memory
code balance (BC)

24 B / LUP

40 B / LUP

Intel Xeon E5-2690 v2
(“IvyBridge”@3 GHz)

Intel Compiler
ifort V13.1

Blocking factor (CS=25
MB) still a little too large

Main memory access is not
reason for different performance

(but L3 access is!)

jmax

18

Straightforward OpenMP work sharing:

 Caveat: LC must be fulfilled per thread  shared cache causes smaller
blocks!

OpenMP parallelization of the blocked 2D stencil

do jb=1,jmax,jblock
!$OMP PARALLEL DO SCHEDULE(static)
do k=1,kmax
do j= jb, min(jb+jblock-1,jmax)
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo
!$OMP END PARALLEL DO
enddo

Layer condition:
3 * jblock * 8B < CSt/2

Cache size available
per thread

T0

T1

T2

(c) RRZE 2020Node-Level Performance Engineering 19

Node-Level Performance Engineering (c) RRZE 2020

OpenMP parallelization and blocking for shared cache

Example: 2D 5-point stencil on Intel Xeon Broadwell 18-core
(non-CoD), 45 MiB of shared L3 cache

20

Pattern!
Excess data
volume

a) Long-range 𝑟𝑟 = 2: 5 layers (2𝑟𝑟 + 1)

b) Long-range 𝑟𝑟 = 2 with gaps: 6 layers (2 per populated row)

c) Asymmetric: 3 layers

d) 2D box: 3 layers

(c) RRZE 2020Node-Level Performance Engineering

Stencil shapes and layer conditions

22

 We have made sense of the memory-bound performance vs. problem size
 “Layer conditions” lead to predictions of code balance
 “What part of the data comes from where” is a crucial question
 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Avoiding slow data paths == re-establishing the most favorable layer
condition

 Improved code showed the speedup predicted by the model
 Optimal blocking factor can be estimated

 Be guided by the cache size the layer condition
 No need for exhaustive scan of “optimization space”

 Food for thought
 Multi-dimensional loop blocking – would it make sense?
 Can we choose a “better” OpenMP loop schedule?
 What would change if we parallelized inner loops?

(c) RRZE 2020Node-Level Performance Engineering

Conclusions from the 2D 5pt example

23

	Case study: A Jacobi smoother
	Stencil schemes
	Jacobi-type 5-pt stencil in 2D
	Jacobi 5-pt stencil in 2D: data transfer analysis
	Case study: A Jacobi smoother
	Analyzing the data flow
	Analyzing the data flow
	Analyzing the data flow
	Analyzing the data flow: Layer condition
	Jacobi 5-pt stencil in 2D: Single core performance
	Case study: A Jacobi smoother
	Fulfilling the layer condition
	Idea: Enable data reuse by blocking!
	Establish the layer condition by blocking
	Fulfilling the layer condition
	Establish layer condition by spatial blocking
	Validating the hypothesis: Measure memory code balance
	OpenMP parallelization of the blocked 2D stencil
	OpenMP parallelization and blocking for shared cache
	Stencil shapes and layer conditions
	Conclusions from the 2D 5pt example

