
Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking

 Stencil schemes frequently occur in PDE solvers on regular lattice
structures

 The regular access structure allows for matrix-free coding

 Complexity of implementation and performance depends on
 update scheme, e.g. Jacobi-type, Gauss-Seidel-type, …
 spatial extent, e.g. 7-pt or 25-pt in 3D,…

(c) RRZE 2020Node-Level Performance Engineering

Stencil schemes

do iter = 1, max_iterations

perform sweep over regular grid: y(:) x(:)

swap y x

enddo
y x

2

Node-Level Performance Engineering (c) RRZE 2020

Jacobi-type 5-pt stencil in 2D

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo

j

k

sw
ee

p

Lattice site
Update
(LUP)

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice site Updates per second” [LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)

3

Naive balance (incl. write allocate):

x(:,:) : 3 RD +
y(:,:) : 1 WR + 1 RD

 BC = 5 Words / LUP = 40 B / LUP (assuming double precision)

Node-Level Performance Engineering (c) RRZE 2020

Jacobi 5-pt stencil in 2D: data transfer analysis

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo

S
W
E
E
P

RD+WR y(j,k)
(incl. write allocate)

RD x(j+1,k)

Available in cache
(used 2 updates before)

RD x(j,k+1)RD x(j,k-1)

4

(j-1,k) (j,k) (j+1,k)

(j,k-1)

(j,k+1)

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking

Node-Level Performance Engineering (c) RRZE 2020

Analyzing the data flow

cached
Worst case: Cache not large enough to hold 3 layers (rows) of grid
(assume “Least Recently Used” replacement strategy)

j

k

x(0:jmax+1,0:kmax+1)

H
al

o
ce

lls
H

al
o

ce
lls

miss

miss

miss

hit

miss

miss

miss

hit

6

Node-Level Performance Engineering (c) RRZE 2020

Analyzing the data flow

j

k

Worst case: Cache not large enough to hold 3 layers (rows) of grid
(+assume „Least Recently Used“ replacement strategy)

x(0:jmax+1,0:kmax+1)

miss

miss

miss

hit

miss

miss

miss

hit

7

Node-Level Performance Engineering (c) RRZE 2020

Analyzing the data flow

Reduce inner (j-)
loop dimension
successively

Best case: 3
“layers” of grid fit
into the cache!

j

k

x(0:jmax2+1,0:kmax+1)

x(0:jmax1+1,0:kmax+1)

miss

miss
miss

hit

miss

miss
miss

hit

miss

hit
hit

hit

8

Node-Level Performance Engineering (c) RRZE 2020

Analyzing the data flow: Layer condition

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo 3 * jmax * 8B < CacheSize/2
“Layer condition”

double
precision

3 rows of
jmax Safety margin

(Rule of thumb)

Layer condition:
• Does not depend on outer loop length (kmax)
• No strict guideline (cache associativity – data traffic for y not included)
• Needs to be adapted for other stencils (e.g., 3D 7-pt stencil)

9

Node-Level Performance Engineering (c) RRZE 2020

Jacobi 5-pt stencil in 2D: Single core performance

jmax=kmax jmax*kmax = const

L3
 C

ac
he

Intel Xeon E5-2690 v2
(“IvyBridge”@3 GHz)

~24 B / LUP ~40 B / LUP

Code balance (𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)
measured with likwid-perfctr

Intel Compiler
ifort V13.1

jmax

Questions:

1. How to achieve
24 B/LUP also
for large jmax?

2. How to sustain
>600 MLUP/s for
jmax > 104 ?

11

Case study: A Jacobi smoother

The basics in two dimensions

Layer conditions

Optimization by spatial blocking

Why 24 byte/LUP?
 High-level view of sweep: read x(:), write y(:)
 if maximum reuse with sweep is possible, 24 byte/LUP should be
achievable

But how to establish the layer condition for all domain sizes?
 Idea: Spatial blocking

 Reuse elements of x(:) as long as they stay in cache
 Main idea: Order of site updates does not matter
 “reduce inner dimension” by cutting the inner loop short

(c) RRZE 2020Node-Level Performance Engineering

Fulfilling the layer condition

13

Node-Level Performance Engineering (c) RRZE 2020

Idea: Enable data reuse by blocking!

Split
domain into
subblocks:

e.g. block
size = 5

14

Node-Level Performance Engineering (c) RRZE 2020

Establish the layer condition by blocking

Additional data
transfers (overhead)
at block boundaries!

15

 “Spatial Blocking” of j-loop:

 Determine for given CacheSize an appropriate jblock value:

(c) RRZE 2020Node-Level Performance Engineering

Fulfilling the layer condition

do jb=1,jmax,jblock ! Assume jmax is multiple of jblock
do k=1,kmax
do j= jb, (jb+jblock-1) ! Length of inner loop: jblock
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo
enddo

New layer condition (blocking)
3 * jblock * 8B < CacheSize/2

jblock < CacheSize / 48 B

16

(c) RRZE 2020Node-Level Performance Engineering

Establish layer condition by spatial blocking

jmax=kmax jmax*kmax = const

L3
 C

ac
he

L1: 32 KB
L2: 256 KB
L3: 25 MBjmax

Which cache to block for?

Intel Xeon E5-2690 v2
(“IvyBridge”@3 GHz)

Intel Compiler
ifort V13.1

jblock < CacheSize / 48 B

L2: CS=256 KB
jblock=min(jmax,5333)

L3: CS=25 MB
jblock=min(jmax,533333)

17

Node-Level Performance Engineering (c) RRZE 2020

Validating the hypothesis: Measure memory code balance

jmax

Measured main memory
code balance (BC)

24 B / LUP

40 B / LUP

Intel Xeon E5-2690 v2
(“IvyBridge”@3 GHz)

Intel Compiler
ifort V13.1

Blocking factor (CS=25
MB) still a little too large

Main memory access is not
reason for different performance

(but L3 access is!)

jmax

18

Straightforward OpenMP work sharing:

 Caveat: LC must be fulfilled per thread shared cache causes smaller
blocks!

OpenMP parallelization of the blocked 2D stencil

do jb=1,jmax,jblock
!$OMP PARALLEL DO SCHEDULE(static)
do k=1,kmax
do j= jb, min(jb+jblock-1,jmax)
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo
!$OMP END PARALLEL DO
enddo

Layer condition:
3 * jblock * 8B < CSt/2

Cache size available
per thread

T0

T1

T2

(c) RRZE 2020Node-Level Performance Engineering 19

Node-Level Performance Engineering (c) RRZE 2020

OpenMP parallelization and blocking for shared cache

Example: 2D 5-point stencil on Intel Xeon Broadwell 18-core
(non-CoD), 45 MiB of shared L3 cache

20

Pattern!
Excess data
volume

a) Long-range 𝑟𝑟 = 2: 5 layers (2𝑟𝑟 + 1)

b) Long-range 𝑟𝑟 = 2 with gaps: 6 layers (2 per populated row)

c) Asymmetric: 3 layers

d) 2D box: 3 layers

(c) RRZE 2020Node-Level Performance Engineering

Stencil shapes and layer conditions

22

 We have made sense of the memory-bound performance vs. problem size
 “Layer conditions” lead to predictions of code balance
 “What part of the data comes from where” is a crucial question
 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Avoiding slow data paths == re-establishing the most favorable layer
condition

 Improved code showed the speedup predicted by the model
 Optimal blocking factor can be estimated

 Be guided by the cache size the layer condition
 No need for exhaustive scan of “optimization space”

 Food for thought
 Multi-dimensional loop blocking – would it make sense?
 Can we choose a “better” OpenMP loop schedule?
 What would change if we parallelized inner loops?

(c) RRZE 2020Node-Level Performance Engineering

Conclusions from the 2D 5pt example

23

	Case study: A Jacobi smoother
	Stencil schemes
	Jacobi-type 5-pt stencil in 2D
	Jacobi 5-pt stencil in 2D: data transfer analysis
	Case study: A Jacobi smoother
	Analyzing the data flow
	Analyzing the data flow
	Analyzing the data flow
	Analyzing the data flow: Layer condition
	Jacobi 5-pt stencil in 2D: Single core performance
	Case study: A Jacobi smoother
	Fulfilling the layer condition
	Idea: Enable data reuse by blocking!
	Establish the layer condition by blocking
	Fulfilling the layer condition
	Establish layer condition by spatial blocking
	Validating the hypothesis: Measure memory code balance
	OpenMP parallelization of the blocked 2D stencil
	OpenMP parallelization and blocking for shared cache
	Stencil shapes and layer conditions
	Conclusions from the 2D 5pt example

