Erlangen Regional
Computing Center
Case study:
Sparse Matrix-Vector Multiplication

SpMVM: The Basics

Sparse Matrix Vector Multiplication (SpMV)

- Key ingredient in some matrix diagonalization algorithms
- Lanczos, Davidson, Jacobi-Davidson
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_{r} (number of matrix rows) entries
- "Sparse": $\mathrm{N}_{\mathrm{nz}} \sim \mathrm{N}_{\mathrm{r}}$
- Average number of nonzeros per row: $N_{n z r}=N_{n z} / N_{r}$

General case: some indirect addressing required!

SpMVM characteristics

- For large problems, SpMV is inevitably memory-bound
- Intra-socket saturation effect on modern multicores
- SpMV is easily parallelizable in shared and distributed memory
- Load balancing
- Communication overhead
- Data storage format is crucial for performance properties
- Most useful general format on CPUs:

Compressed Row Storage (CRS)

- Depending on compute architecture

CRS matrix storage scheme

- val[] stores all the nonzeros (length $\mathrm{N}_{\mathrm{n} 2}$)
- col_idx[] stores the column index of each nonzero (length N_{nz})
- row_ptr[] stores the starting index of each new row in val[] (length: N_{r})

Case study: Sparse matrix-vector multiply

- Strongly memory-bound for large data sets
- Streaming, with partially indirect access:

```
!$OMP parallel do schedule(???)
do i = 1,Nr
    do j = row_ptr(i), row_ptr(i+1) - 1
        c(i) = c(i) + val(j) * b(col_idx(j))
    enddo
enddo
!$OMP end parallel do
```

- Usually many spMVMs required to solve a problem
- Now let's look at some performance measurements...

Erlangen Regional
Computing Center

SpMVM: Performance Analysis

Performance characteristics

- Strongly memory-bound for large data sets \rightarrow saturating performance across cores on the chip
- Performance seems to depend on the matrix
- Can we explain this?
- Is there a "light speed" for SpMV?
- Optimization?

SpMV node performance model

Sparse MVM in double precision w/ CRS data storage:

```
do i = 1, Nr
    do j = row_ptr(i), row_ptr(i+1) - 1
    enddo
enddo
```

$$
B_{c}^{D P, C R S}=\frac{8+4-8,20 / N_{n z r}}{2} \frac{\mathrm{~B}}{\mathrm{~F}}=\left(6+4 \alpha+\frac{10}{N_{n z r}}\right) \frac{\mathrm{B}}{\mathrm{~F}}
$$

Absolute minimum code balance: $B_{\min }=6 \frac{\mathrm{~B}}{\mathrm{~F}}$

$$
\rightarrow I_{\max }=\frac{1}{6} \overline{\mathrm{~F}}
$$

Hard upper limit for in-memory performance: $b_{S} / B_{\min }$

DP CRS code balance

- α quantifies the traffic for loading the RHS
- $\alpha=0 \rightarrow$ RHS is in cache
- $\alpha=1 / \mathrm{N}_{\mathrm{nzr}} \rightarrow$ RHS loaded once

$$
\begin{aligned}
B_{c}^{D P, C R S}(\alpha) & =\frac{8+4+8 \alpha+20 / N_{n Z r}}{2} \frac{\mathrm{~B}}{\mathrm{~F}} \\
& =\left(6+4 \alpha+\frac{10}{N_{n z r}}\right) \frac{\mathrm{B}}{\mathrm{~F}}
\end{aligned}
$$

- $\alpha=1 \rightarrow$ no cache
- $\alpha>1 \rightarrow$ Houston, we have a problem!
- "Target" performance $=b_{S} / B_{c}$
- Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict α ?

- Not in general
- Simple cases (banded, block-structured): Similar to layer condition analysis
\rightarrow Determine α by measuring the actual memory traffic

Determine α (RHS traffic quantification)

$$
B_{c}^{D P, C R S}=\left(6+4 \alpha+\frac{10}{N_{n z r}}\right) \frac{\mathrm{B}}{\mathrm{~F}}=\frac{V_{\text {meas }}}{N_{n z} \cdot 2 \mathrm{~F}}
$$

- $V_{\text {meas }}$ is the measured overall memory data traffic (using, e.g., likwidperfctr)
- Solve for α :

$$
\alpha=\frac{1}{4}\left(\frac{V_{\text {meas }}}{N_{n z} \cdot 2 \text { bytes }}-6-\frac{10}{N_{n z r}}\right)
$$

Example: kkt_power matrix from the UoF collection on one Intel SNB socket

- $N_{n z}=14.6 \cdot 10^{6}, N_{n z r}=7.1$
- $V_{\text {meas }} \approx 258 \mathrm{MB}$
- $\rightarrow \alpha=0.36, \alpha N_{n z r}=2.5$
- \rightarrow RHS is loaded 2.5 times from memory
- and:

$$
\frac{B_{c}^{D P, C R S}(\alpha)}{B_{c}^{D P, C R S}\left(1 / N_{n z r}\right)}=1.11
$$

Three different sparse matrices

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, $b_{S}=46.6 \mathrm{~GB} / \mathrm{s}$

Matrix	N	$N_{n z r}$	$B_{c}^{o p t}[\mathrm{~B} / \mathrm{F}]$	$P_{o p t}[\mathrm{GF} / \mathrm{s}]$
DLR1	278,502	143	6.1	7.64
scai1	$3,405,035$	7.0	8.0	5.83
kkt_power	$2,063,494$	7.08	8.0	5.83

DLR1

scai1

kkt_power

- $b_{S}=46.6 \mathrm{~GB} / \mathrm{s}, B_{c}^{\text {min }}=6 \mathrm{~B} / \mathrm{F}$
- Maximum spMVM performance:
- scai1 measured balance:

$$
B_{c}^{\text {meas }} \approx 8.5 \mathrm{~B} / \mathrm{F}>B_{c}^{o p t}
$$

- \rightarrow good BW utilization, slightly nonoptimal α
- kkt_power measured balance:

$$
B_{c}^{\text {meas }} \approx 8.8 \mathrm{~B} / \mathrm{F}>B_{c}^{\text {opt }}
$$

- \rightarrow performance degraded by load imbalance, fix by block-cyclic schedule

Erlangen Regional
Computing Center

SpMVM with multiple RHS \& LHS Vectors

Multiple RHS vectors (SpMMV)

Unchanged matrix applied to multiple RHS vectors to yield multiple LHS vectors

```
do \(s=1, r\)
    do \(i=1\), Nr
        do j = row_ptr(i),row_ptr(i+1)-1
        C(i,s) = C(i,s) + val(j) *
                B(col_idx(j),s)
        enddo
    enddo
enddo
```

B_{c} unchanged, no reuse of matrix data

```
do i = 1, Nr
    do j = row_ptr(i),row_ptr(i+1)-1
        do s = 1,r
            C(i,s) = C(i,s) + val(j) *
                            B(col_idx(j),s)
        enddo
    enddo Lower }\mp@subsup{B}{c}{}\mathrm{ due to max
                reuse of matrix data
```

```
do \(i=1, N r\)
    do j = row_ptr(i),row_ptr(i+1)-1
        do \(s=1, r\)
        \(C(s, i)=C(s, i)+\operatorname{val}(j)\) *
        B(s,col_idx(j))
        enddo
        enddo
    enddo
```

CL-friendly data structure (row major)

SpMMV code balance

"-

One complete inner (s) loop traversal:

- $2 r$ flops
- 12 bytes from matrix data (value + index)
- $\frac{16 r}{N_{n z r}}$ bytes from the r LHS updates
- $\frac{4}{N_{n z r}}$ bytes from the row pointer
- $8 r \alpha(r)$ bytes from the r RHS reads
enddo
enddo enddo

```
do i = 1, Nr
```

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
do s = 1,r
C(s,i) = C(s,i) + val(j) *
C(s,i) = C(s,i) + val(j) *
B(s,col_idx(j))
B(s,col_idx(j))
enddo

```
                            enddo
```


SpMMV code balance

Let's check some limits to see if this makes sense!

$$
\begin{aligned}
& B_{c}(r)=\left(\frac{6}{r}+4 \alpha(r)+\frac{8+2 / r}{N_{n z r}}\right) \frac{\mathrm{B}}{\mathrm{~F}} \xrightarrow{r=1} \underbrace{\left(6+4 \alpha+\frac{10}{N_{n z r}}\right) \frac{\mathrm{B}}{\mathrm{~F}}}_{\text {reassuring })} \\
& \text { Can become very small for } \\
& \text { large } N_{n z r} \rightarrow \text { decoupling from } \\
& \text { memory bandwidth is possible! }
\end{aligned}
$$

M. Kreutzer et al.: Performance Engineering of the

Kernel Polynomial Method on Large-Scale CPU-GPU
Systems. Proc. IPDPS15, DOI:
10.1109/IPDPS. 2015.76

Roofline analysis for spMVM

- Conclusion from the Roofline analysis
- The roofline model does not "work" for spMVM due to the RHS traffic uncertainties
- We have "turned the model around" and measured the actual memory traffic to determine the RHS overhead
- Result indicates:

1. how much actual traffic the RHS generates
2. how efficient the RHS access is (compare BW with max. BW)
3. how much optimization potential we have with matrix reordering

- Do not forget about load balancing!
- Sparse matrix times multiple vectors bears the potential of huge savings in data volume
- Consequence: Modeling is not always 100\% predictive. It's all about learning more about performance properties!

