
Case study:
Sparse Matrix-Vector Multiplication

SpMVM: The Basics

(c) RRZE 2020 3

Sparse Matrix Vector Multiplication (SpMV)

 Key ingredient in some matrix diagonalization algorithms
 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors with
Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

 Average number of nonzeros per row: Nnzr = Nnz/Nr

= + • Nr

General case:
some indirect
addressing
required!

Sparse Matrix-Vector Multiplication

Sparse Matrix-Vector Multiplication (c) RRZE 2020 4

SpMVM characteristics

 For large problems, SpMV is inevitably memory-bound
 Intra-socket saturation effect on modern multicores

 SpMV is easily parallelizable in shared and distributed
memory
 Load balancing
 Communication overhead

 Data storage format is crucial for performance properties
Most useful general format on CPUs:

Compressed Row Storage (CRS)
 Depending on compute architecture

Sparse Matrix-Vector Multiplication (c) RRZE 2020 5

CRS matrix storage scheme

…

column index

ro
w

 in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

 val[] stores all the nonzeros (length
Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

Sparse Matrix-Vector Multiplication (c) RRZE 2020 6

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets
 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j))
enddo
enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do

SpMVM: Performance Analysis

Sparse Matrix-Vector Multiplication (c) RRZE 2020 8

Performance characteristics

 Strongly memory-bound for large data sets  saturating performance
across cores on the chip

 Performance seems to depend on the matrix

 Can we explain
this?

 Is there a
“light speed”
for SpMV?

 Optimization?

???

???

10-core Ivy
Bridge, static
scheduling

Sparse Matrix-Vector Multiplication (c) RRZE 2020 9

SpMV node performance model

Sparse MVM in
double precision
w/ CRS data storage:

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶 =

8+4+8𝛼𝛼+20/𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛
2

B
F

Absolute minimum code balance: 𝐵𝐵min = 6 B
F

 𝐼𝐼max = 1
6

F
B

= 6+4α+
10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

Hard upper limit for
in-memory
performance: 𝑏𝑏𝑆𝑆/𝐵𝐵min

Sparse Matrix-Vector Multiplication (c) RRZE 2020 10

The “𝜶𝜶 effect”

DP CRS code balance
 α quantifies the traffic

for loading the RHS
 𝛼𝛼 = 0  RHS is in cache
 𝛼𝛼 = 1/Nnzr  RHS loaded once
 𝛼𝛼 = 1  no cache
 𝛼𝛼 > 1  Houston, we have a problem!

 “Target” performance = 𝑏𝑏𝑆𝑆/𝐵𝐵𝑐𝑐
 Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict 𝛼𝛼?
 Not in general
 Simple cases (banded, block-structured): Similar to layer condition analysis

 Determine 𝛼𝛼 by measuring the actual memory traffic

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼) =

8+4+8𝛼𝛼+20/𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛
2

B
F

= 6+4α+ 10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

Sparse Matrix-Vector Multiplication (c) RRZE 2020 11

Determine 𝜶𝜶 (RHS traffic quantification)

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the measured overall memory data traffic (using, e.g., likwid-
perfctr)

 Solve for 𝛼𝛼:

Example: kkt_power matrix from the UoF collection
on one Intel SNB socket

 𝑁𝑁𝑛𝑛𝑛𝑛 = 14.6 � 106, 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 = 7.1
 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 258 MB
  𝛼𝛼 = 0.36, 𝛼𝛼𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 = 2.5
  RHS is loaded 2.5 times from memory
 and:

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶 = 6+4α+

10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

=
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑛𝑛𝑛𝑛 � 2 F

𝛼𝛼 =
1
4

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑛𝑛𝑛𝑛 � 2 bytes

− 6 −
10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼)

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶(1/𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛)

= 1.11 11% extra traffic
optimization potential!

Sparse Matrix-Vector Multiplication (c) RRZE 2020 12

Three different sparse matrices

Matrix 𝑁𝑁 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 𝐵𝐵𝑐𝑐
𝑜𝑜𝑜𝑜𝑜𝑜 [B/F] 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 [GF/s]

DLR1 278,502 143 6.1 7.64
scai1 3,405,035 7.0 8.0 5.83
kkt_power 2,063,494 7.08 8.0 5.83

DLR1 scai1 kkt_power

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, 𝑏𝑏𝑆𝑆 = 46.6 ⁄GB s

Sparse Matrix-Vector Multiplication (c) RRZE 2020 13

Now back to the start…

 𝑏𝑏𝑆𝑆 = 46.6 ⁄GB s , 𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 6 ⁄B F
 Maximum spMVM performance:

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 7.8 ⁄GF s
 DLR1 causes minimum CRS code

balance (as expected)

 scai1 measured balance:

𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 8.5 B/F > 𝐵𝐵𝑐𝑐
𝑜𝑜𝑜𝑜𝑜𝑜

  good BW utilization, slightly non-
optimal 𝛼𝛼

 kkt_power measured balance:

𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 8.8 B/F > 𝐵𝐵𝑐𝑐
𝑜𝑜𝑜𝑜𝑜𝑜

  performance degraded by load
imbalance, fix by block-cyclic
schedule

scai1, kkt_power upper limit

Sparse Matrix-Vector Multiplication (c) RRZE 2020 14

Investigating the load imbalance with kkt_power

static,2048

static

 Fewer overall instructions, (almost)
BW saturation, 50% better
performandce with load balancing

 CPI value unchanged!

Measurements with likwid-perfctr
(MEM_DP group)

SpMVM with multiple RHS & LHS Vectors

Sparse Matrix-Vector Multiplication (c) RRZE 2020 16

Multiple RHS vectors (SpMMV)

Unchanged matrix applied to multiple RHS vectors to yield multiple LHS
vectors
do s = 1,r
do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
C(i,s) = C(i,s) + val(j) *

B(col_idx(j),s)
enddo

enddo
enddo

𝐵𝐵𝑐𝑐 unchanged, no
reuse of matrix data

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(i,s) = C(i,s) + val(j) *

B(col_idx(j),s)
enddo

enddo
enddo

Lower 𝐵𝐵𝑐𝑐 due to max
reuse of matrix data

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(s,i) = C(s,i) + val(j) *

B(s,col_idx(j))
enddo

enddo
enddo

CL-friendly data
structure (row major)

Sparse Matrix-Vector Multiplication (c) RRZE 2020 17

SpMMV code balance
One complete inner (s) loop traversal:
 2𝑟𝑟 flops
 12 bytes from matrix data

(value + index)


16𝑟𝑟
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

bytes from the 𝑟𝑟 LHS updates


4

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛
bytes from the row pointer

 8𝑟𝑟𝑟𝑟 𝑟𝑟 bytes from the 𝑟𝑟 RHS reads

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(s,i) = C(s,i) + val(j) *

B(s,col_idx(j))
enddo

enddo
enddo

𝐵𝐵𝑐𝑐 𝑟𝑟 =
1
2𝑟𝑟

12 + 8𝑟𝑟𝑟𝑟 𝑟𝑟 +
16𝑟𝑟 + 4
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

=
6
𝑟𝑟

+ 4𝛼𝛼 𝑟𝑟 +
8 + 2/𝑟𝑟
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F OK so what now???

Sparse Matrix-Vector Multiplication (c) RRZE 2020 18

SpMMV code balance

Let’s check some limits to see if this makes sense!

𝐵𝐵𝑐𝑐 𝑟𝑟 =
6
𝑟𝑟

+ 4𝛼𝛼 𝑟𝑟 +
8 + 2/𝑟𝑟
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

𝑟𝑟 = 1
6+4α+

10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

4𝛼𝛼 𝑟𝑟 +
8

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛
B
F

reassuring 

Can become very small for
large 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛  decoupling from
memory bandwidth is possible!

M. Kreutzer et al.: Performance Engineering of the
Kernel Polynomial Method on Large-Scale CPU-GPU
Systems. Proc. IPDPS15, DOI:
10.1109/IPDPS.2015.76

6
𝑟𝑟

B
F

http://www.ipdps.org/
http://dx.doi.org/10.1109/IPDPS.2015.76

Sparse Matrix-Vector Multiplication (c) RRZE 2020 19

Roofline analysis for spMVM

 Conclusion from the Roofline analysis
 The roofline model does not “work” for spMVM due to the RHS

traffic uncertainties
We have “turned the model around” and measured the actual

memory traffic to determine the RHS overhead
 Result indicates:

1. how much actual traffic the RHS generates
2. how efficient the RHS access is (compare BW with max. BW)
3. how much optimization potential we have with matrix reordering

 Do not forget about load balancing!
 Sparse matrix times multiple vectors bears the potential of huge

savings in data volume

 Consequence: Modeling is not always 100% predictive. It‘s all about
learning more about performance properties!

	Case study:�Sparse Matrix-Vector Multiplication
	SpMVM: The Basics
	Sparse Matrix Vector Multiplication (SpMV)
	SpMVM characteristics
	CRS matrix storage scheme
	Case study: Sparse matrix-vector multiply
	SpMVM: Performance Analysis
	Performance characteristics
	SpMV node performance model
	The “𝜶 effect”
	Determine 𝜶 (RHS traffic quantification)
	Three different sparse matrices
	Now back to the start…
	Investigating the load imbalance with kkt_power
	SpMVM with multiple RHS & LHS Vectors
	Multiple RHS vectors (SpMMV)
	SpMMV code balance
	SpMMV code balance
	Roofline analysis for spMVM

