

Case study: Sparse Matrix-Vector Multiplication

SpMVM: The Basics

- Key ingredient in some matrix diagonalization algorithms
 - Lanczos, Davidson, Jacobi-Davidson
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_r (number of matrix rows) entries
- "Sparse": N_{nz} ~ N_r
- Average number of nonzeros per row: N_{nzr} = N_{nz}/N_r

- For large problems, SpMV is inevitably memory-bound
 Intra-socket saturation effect on modern multicores
- SpMV is easily parallelizable in shared and distributed memory
 - Load balancing
 - Communication overhead
- Data storage format is crucial for performance properties
 - Most useful general format on CPUs: Compressed Row Storage (CRS)
 - Depending on compute architecture

CRS matrix storage scheme

- val[] stores all the nonzeros (length N_{nz})
- col_idx[] stores the column index of each nonzero (length N_{nz})
- row_ptr[] stores the starting index of each new row in val[] (length: N_r)

Case study: Sparse matrix-vector multiply

- Strongly memory-bound for large data sets
 - Streaming, with partially indirect access:

```
!$OMP parallel do schedule(???)
do i = 1,Nr
  do j = row_ptr(i), row_ptr(i+1) - 1
    c(i) = c(i) + val(j) * b(col_idx(j))
  enddo
enddo
!$OMP end parallel do
```

- Usually many spMVMs required to solve a problem
- Now let's look at some performance measurements...

SpMVM: Performance Analysis

Performance characteristics

- Strongly memory-bound for large data sets
 saturating performance across cores on the chip
- Performance seems to depend on the matrix
- Can we explain this?
- Is there a "light speed" for SpMV?
- Optimization?

FRIEDRICH-ALEXAN

SpMV node performance model

Sparse MVM in double precision w/ CRS data storage:

do i = 1,
$$N_r$$

do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo
enddo

$$B_{c}^{DP,CRS} = \frac{8 + 4 + 8\alpha + 20/N_{nzr}}{2} \frac{B}{F} = \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F}$$

Absolute minimum code balance:
$$B_{\min} = 6 \frac{B}{F}$$

 $\Rightarrow I_{\max} = \frac{1}{6} \frac{F}{B}$
Hard upper limit for in-memory performance: b_S/B_{\min}

DP CRS code balance

- α quantifies the traffic for loading the RHS
 - $\alpha = 0 \rightarrow \text{RHS}$ is in cache
 - $\alpha = 1/N_{nzr} \rightarrow RHS$ loaded once
 - $\alpha = 1 \rightarrow$ no cache
 - $\alpha > 1 \rightarrow$ Houston, we have a problem!
- "Target" performance = b_S/B_c
- Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict α ?

- Not in general
- Simple cases (banded, block-structured): Similar to layer condition analysis

\rightarrow Determine α by measuring the actual memory traffic

$$B_{c}^{DP,CRS}(\alpha) = \frac{8+4+8\alpha+20/N_{nzr}}{2}\frac{B}{F}$$
$$= \left(6+4\alpha+\frac{10}{N_{nzr}}\right)\frac{B}{F}$$

Determine α (RHS traffic quantification)

$$B_{c}^{DP,CRS} = \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right)\frac{B}{F} = \frac{V_{meas}}{N_{nz} \cdot 2 F}$$

 V_{meas} is the measured overall memory data traffic (using, e.g., likwidperfctr)

Solve for
$$\alpha$$
:

$$\alpha = \frac{1}{4} \left(\frac{V_{meas}}{N_{nz} \cdot 2 \text{ bytes}} - 6 - \frac{10}{N_{nzr}} \right)$$

Example: kkt_power matrix from the UoF collection on one Intel SNB socket

$$N_{nz} = 14.6 \cdot 10^6$$
, $N_{nzr} = 7.1$

- $V_{meas} \approx 258 \text{ MB}$
- $\rightarrow \alpha = 0.36, \alpha N_{nzr} = 2.5$
- → RHS is loaded 2.5 times from memory

$$\frac{B_c^{DP,CRS}(\alpha)}{B_c^{DP,CRS}(1/N_{nzr})} = 1.11$$

11% extra traffic → optimization potential!

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, $b_S = 46.6 \text{ GB/s}$

Matrix	Ν	N _{nzr}	B_c^{opt} [B/F]	P_{opt} [GF/s]
DLR1	278,502	143	6.1	7.64
scai1	3,405,035	7.0	8.0	5.83
kkt_power	2,063,494	7.08	8.0	5.83

DLR1

scai1

kkt_power

Now back to the start...

Investigating the load imbalance with kkt_power

SpMVM with multiple RHS & LHS Vectors

Multiple RHS vectors (SpMMV)

Unchanged matrix applied to multiple RHS vectors to yield multiple LHS vectors

```
do s = 1,r
do i = 1, Nr
                                        do i = 1, Nr
  do j = row ptr(i), row ptr(i+1)-1
                                         do j = row_ptr(i), row_ptr(i+1)-1
   C(i,s) = C(i,s) + val(j) *
                                          do s = 1,r
            B(col idx(j),s)
                                           C(i,s) = C(i,s) + val(j) *
  enddo
                                                     B(col idx(j), s)
 enddo
                                          enddo
                 B_c unchanged, no
                                                        Lower B_c due to max
enddo
                                         enddo
                 reuse of matrix data
                                                        reuse of matrix data
                                        enddo
               do i = 1, Nr
                do j = row_ptr(i),row_ptr(i+1)-1
                 do s = 1,r
                  C(s,i) = C(s,i) + val(j) *
                            B(s,col idx(j))
                  enddo
                                 CL-friendly data
                 enddo
                                 structure (row major)
                enddo
```


One complete inner (s) loop traversal:

• 2r flops

 B_c

- 12 bytes from matrix data (value + index)
- $\frac{16r}{N_{nzr}}$ bytes from the *r* LHS updates
- $\frac{4}{N_{nzr}}$ bytes from the row pointer
- $8r\alpha(r)$ bytes from the *r* RHS reads

$$(r) = \frac{1}{2r} \left(12 + 8r\alpha(r) + \frac{16r + 4}{N_{nzr}} \right) \frac{B}{F}$$

$$= \left(\frac{6}{r} + 4\alpha(r) + \frac{8 + 2/r}{N_{nzr}}\right) \frac{B}{F} \qquad \text{OK so what now???}$$

Let's check some limits to see if this makes sense!

M. Kreutzer et al.: *Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems.* Proc. <u>IPDPS15</u>, <u>DOI:</u> <u>10.1109/IPDPS.2015.76</u>

- Conclusion from the Roofline analysis
 - The roofline model does not "work" for spMVM due to the RHS traffic uncertainties
 - We have "turned the model around" and measured the actual memory traffic to determine the RHS overhead
 - Result indicates:
 - 1. how much actual traffic the RHS generates
 - 2. how efficient the RHS access is (compare BW with max. BW)
 - 3. how much optimization potential we have with matrix reordering
 - Do not forget about load balancing!
 - Sparse matrix times multiple vectors bears the potential of huge savings in data volume
- Consequence: Modeling is not always 100% predictive. It's all about learning more about performance properties!