UNIVERSITAT

El’langen Regiona[ ERLANGEN-NURNBERG

Computing Center

Case study:
Sparse Matrix-Vector Multiplication




FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

SpMVM: The Basics




FRIEDRICH-ALEXANDER

Sparse Matrix Vector Multiplication (SpMV) =

= Key ingredient in some matrix diagonalization algorithms
= Lanczos, Davidson, Jacobi-Davidson

= Store only N,, nonzero elements of matrix and RHS, LHS vectors with
N, (number of matrix rows) entries

“Sparse”™. N, ~ N,
= Average number of nonzeros per row: N, ,, = N,,/N,

N
General case:
— + ° >N some indirect
' addressing
required!
J
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SpMVM characteristics =

= For large problems, SpMV is inevitably memory-bound
= |ntra-socket saturation effect on modern multicores

= SpMV is easily parallelizable in shared and distributed
memory
= Load balancing
= Communication overhead

= Data storage format is crucial for performance properties

= Most useful general format on CPUs:
Compressed Row Storage (CRS)

= Depending on compute architecture
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CRS matrix storage scheme =

column index

>
. 123 4 .. = val[] stores all the nonzeros (length
2 an)
<3 = col_1dx[] stores the column index
é 4 of each nonzero (length N_,)
g = row_ptr[] stores the starting index
of each new row in val [] (length: N))
\4

1|5(812[15]19] .. row_ptr[]
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Case study: Sparse matrix-vector multiply F=iim

Strongly memory-bound for large data sets
Streaming, with partially indirect access:

150MP parallel do schedule(???)

do 1 = 1,N,

do J = row _ptr(i), row ptr(i+l) - 1
c(i) = c(n) + * b(col _1dx(j))

enddo

enddo

I$50MP end parallel do

Usually many spMVMs required to solve a problem

Now let's look at some performance measurements...
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Performance characteristics
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Strongly memory-bound for large data sets - saturating performance

across cores on the chip

Performance seems to depend on the matrix

Can we explain
this?

Is there a
“light speed”
for SpMV?

Optimization?

Performance [Gflop/s]

| |
10-core Ivy

Bridge, static
scheduling

o—o DLR1
o—0 scai
o= Kkt _power

6 8 10
# cores

277

?7?77?
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SpMV node performance model =

Sparse MVM in do i = 1,N,
double precision do j =| row ptr(i)l row ptr(i+1) - 1
w/ CRS data storage: C(i) = C(i)[+[val(§)|*iBllcol_idx(j))
enddo
enddo
ppcrs |8 4+HBaH20/Nyyr|B 10 \ B
B, = ==\ 6+4a+ =
2 F N, ) F

Absolute minimum code balance: By, = 6 % » Hard upper limit for
1 F iIn-memory
2 Imax = 6B performance: bs/Bmin
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The “a effect”

FRIEDRICH-

AAAAAAAAA

DP CRS code balance

a quantifies the traffic c
for loading the RHS

a =0 2> RHS is in cache

a = 1/N,,, 2 RHS loaded once

a =1 - no cache

a > 1 - Houston, we have a problem!

“Target” performance = by /B,

Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict a?
Not in general

Simple cases (banded, block-structured): Similar to layer condition analysis

DP,CRS
B a

~ 8+4+8a+20/Ny,, B
B 2 F
= (6+4a+ = )%

- Determine a by measuring the actual memory traffic
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Determine a (RHS traffic quantification) =i S

10 \ B V
BDP,CRS = | 6+4a+ _ — meas
c "N _JF N_ -2F

Vheas 1S the measured overall memory data traffic (using, e.g., likwid-
perfctr)

Solve for a: 1( Vieas 10 >
a=-

N,,, - 2 bytes B N, .

Example: kkt_power matrix from the UoF collection
on one Intel SNB socket

N,, = 14.6 - 105, N, = 7.1

Vineas = 258 MB
-2 a = 0.36, aN,,,, = 2.5

- RHS is loaded 2.5 times from memory \
and: DP,CRS :
B; (@) 111 _— 11% extra traffic >
Bé)P,CRS (1/N,,) I optimization potential!
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Three different sparse matrices =
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Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, b = 46.6 GB/s

Matrix N N, BPY [BIF]  Popt [GFIS]
DLR1 278,502 143 6.1 7.64
scail 3,405,035 7.0 8.0 5.83
kkt_power 2063494 7.08 8.0 5.83

DLR1

scail

kkt_power
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Now back to the start...
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Performance [Gflop/s]

w
=]
I

N
o
|

o—o DLR1

Measured memory bandwidth [Gb‘

8 ] ] ] ] ]
absolute ufpper limit
B =6B/F
6 scail, kkt_power upper limit
/‘ |
4 STATIC, 2048
2 -
o=o scail a
o= Kkt power
0 | | L 50F T T T T T
2 4 s b.. = 46.6 Gbyte/
# core = sTT yiers

STATIC, 2048

yak

101 o=0 scai (b) 7
o= Kkt_power
I I I I I
0 2 4 6 8 10
# cores

bs = 46.6 GB/s, B™" = 6B/F
Maximum spMVM performance:

Py = 7.8GF/s

DLR1 causes minimum CRS code
balance (as expected)

scail measured balance;

BMeas ~ 8,5 B/F > BP*

- good BW utilization, slightly non-
optimal a

kkt power measured balance:

BMeas ~ 88 B/F > BP*

- performance degraded by load
Imbalance, fix by block-cyclic
schedule
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251 (a)

Measurements with likwid-perfctr

20 -
> l (MEM_DP group)
= 1ok -

of H E NN

6

- (b) 7] FP operations -

I [Instructions retired

> Fewer overall instructions, (almost) 2
BW saturation, 50% better
performandce with load balancing

- CPI value unchanged!
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Multiple RHS vectors (SpMMV) =

Unchanged matrix applied to multiple RHS vectors to yield multiple LHS

vectors q
do s = 1,r

do 1 =1, Nr do 1 =1, Nr
do J = row_ptr(i),row_ptr(i+l)-1 do J = row_ptr(i),row _ptr(i+l)-1
C(i,s) = C(r,s) + val(g) * do s = 1,r
B(col _1dx(jJ),s) C(i,s) = C(i,s) + val(g) *
enddo B(col _1dx(}),s)
enddo B, unchanged, no enddo
enddo reuse of matrix data enddo Lower B, due to max
enddo reuse of matrix data

do 1 =1, Nr
do J = row_ptr(i),row_ptr(i+l)-1
do s = 1,r
C(s,1) = C(s,1) + val(g) *
B(s,col _1dx(}))

enddo CL-friendly data

enddo _
enddo structure (row major)
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SpMMYV code balance =i S

One complete inner (s) loop traversal:

27 flops do 1 =1, Nr ] )

12 bytes from matrix data 28 4 = TR RS
(value + index) C(s. i) = C(s.i) + val(G) *

—°" pytes from the r LHS updates . o(s.col_tax())

ZZT _ enddo

bytes from the row pointer enddo

8ra(r) bytes from the r RHS reads

B.(r) 1 1248 ()+16r+4B
r) =— ra(r =
¢ 2r N,,- JF

6 8+ 2/r\B
=|(—+4a(r) + — OK so what now???
r N,,- | F
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SpMMYV code balance =1
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Let’'s check some limits to see if this makes sense!

6 8+ 2/r\B r=1 10 \ B
Bc(r>=(—+4a<r>+—/>— : <6+4a+N )F
T nzr

B

F

Nozr ) F
N J
Y

™~ .

A | reassuring ©
|
§ 7
a\r
anr
N J
'

Qo
1| &

Can become very small for
large N,,,,- = decoupling from

memory bandwidth is possible!

M. Kreutzer et al.: Performance Engineering of the
Kernel Polynomial Method on Large-Scale CPU-GPU
Systems. Proc. IPDPS15, DOL:
10.1109/IPDPS.2015.76
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Roofline analysis for spMVM =

Conclusion from the Roofline analysis

The roofline model does not “work” for spMVM due to the RHS

traffic uncertainties

We have “turned the model around” and measured the actual

memory traffic to determine the RHS overhead

Result indicates:
how much actual traffic the RHS generates
how efficient the RHS access is (compare BW with max. BW)
how much optimization potential we have with matrix reordering

Do not forget about load balancing!

Sparse matrix times multiple vectors bears the potential of huge
savings in data volume

Consequence: Modeling is not always 100% predictive. It's all about
learning more about performance properties!
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