
Case study:
Sparse Matrix-Vector Multiplication

SpMVM: The Basics

(c) RRZE 2020 3

Sparse Matrix Vector Multiplication (SpMV)

 Key ingredient in some matrix diagonalization algorithms
 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors with
Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

 Average number of nonzeros per row: Nnzr = Nnz/Nr

= + • Nr

General case:
some indirect
addressing
required!

Sparse Matrix-Vector Multiplication

Sparse Matrix-Vector Multiplication (c) RRZE 2020 4

SpMVM characteristics

 For large problems, SpMV is inevitably memory-bound
 Intra-socket saturation effect on modern multicores

 SpMV is easily parallelizable in shared and distributed
memory
 Load balancing
 Communication overhead

 Data storage format is crucial for performance properties
Most useful general format on CPUs:

Compressed Row Storage (CRS)
 Depending on compute architecture

Sparse Matrix-Vector Multiplication (c) RRZE 2020 5

CRS matrix storage scheme

…

column index

ro
w

 in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

 val[] stores all the nonzeros (length
Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

Sparse Matrix-Vector Multiplication (c) RRZE 2020 6

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets
 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j))
enddo
enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do

SpMVM: Performance Analysis

Sparse Matrix-Vector Multiplication (c) RRZE 2020 8

Performance characteristics

 Strongly memory-bound for large data sets saturating performance
across cores on the chip

 Performance seems to depend on the matrix

 Can we explain
this?

 Is there a
“light speed”
for SpMV?

 Optimization?

???

???

10-core Ivy
Bridge, static
scheduling

Sparse Matrix-Vector Multiplication (c) RRZE 2020 9

SpMV node performance model

Sparse MVM in
double precision
w/ CRS data storage:

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶 =

8+4+8𝛼𝛼+20/𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛
2

B
F

Absolute minimum code balance: 𝐵𝐵min = 6 B
F

 𝐼𝐼max = 1
6

F
B

= 6+4α+
10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

Hard upper limit for
in-memory
performance: 𝑏𝑏𝐶𝐶/𝐵𝐵min

Sparse Matrix-Vector Multiplication (c) RRZE 2020 10

The “𝜶𝜶 effect”

DP CRS code balance
 α quantifies the traffic

for loading the RHS
 𝛼𝛼 = 0 RHS is in cache
 𝛼𝛼 = 1/Nnzr RHS loaded once
 𝛼𝛼 = 1 no cache
 𝛼𝛼 > 1 Houston, we have a problem!

 “Target” performance = 𝑏𝑏𝐶𝐶/𝐵𝐵𝑐𝑐
 Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict 𝛼𝛼?
 Not in general
 Simple cases (banded, block-structured): Similar to layer condition analysis

 Determine 𝛼𝛼 by measuring the actual memory traffic

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼) =

8+4+8𝛼𝛼+20/𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛
2

B
F

= 6+4α+ 10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

Sparse Matrix-Vector Multiplication (c) RRZE 2020 11

Determine 𝜶𝜶 (RHS traffic quantification)

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the measured overall memory data traffic (using, e.g., likwid-
perfctr)

 Solve for 𝛼𝛼:

Example: kkt_power matrix from the UoF collection
on one Intel SNB socket

 𝑁𝑁𝑛𝑛𝑛𝑛 = 14.6 � 106, 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 = 7.1
 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 258 MB
 𝛼𝛼 = 0.36, 𝛼𝛼𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 = 2.5
 RHS is loaded 2.5 times from memory
 and:

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶 = 6+4α+

10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

=
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑛𝑛𝑛𝑛 � 2 F

𝛼𝛼 =
1
4

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑛𝑛𝑛𝑛 � 2 bytes

− 6 −
10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼)

𝐵𝐵𝑐𝑐
𝐷𝐷𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶(1/𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛)

= 1.11 11% extra traffic
optimization potential!

Sparse Matrix-Vector Multiplication (c) RRZE 2020 12

Three different sparse matrices

Matrix 𝑁𝑁 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 𝐵𝐵𝑐𝑐
𝑜𝑜𝑜𝑜𝑜𝑜 [B/F] 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 [GF/s]

DLR1 278,502 143 6.1 7.64
scai1 3,405,035 7.0 8.0 5.83
kkt_power 2,063,494 7.08 8.0 5.83

DLR1 scai1 kkt_power

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, 𝑏𝑏𝐶𝐶 = 46.6 ⁄GB s

Sparse Matrix-Vector Multiplication (c) RRZE 2020 13

Now back to the start…

 𝑏𝑏𝐶𝐶 = 46.6 ⁄GB s , 𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑛𝑛 = 6 ⁄B F
 Maximum spMVM performance:

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 7.8 ⁄GF s
 DLR1 causes minimum CRS code

balance (as expected)

 scai1 measured balance:

𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 8.5 B/F > 𝐵𝐵𝑐𝑐
𝑜𝑜𝑜𝑜𝑜𝑜

 good BW utilization, slightly non-
optimal 𝛼𝛼

 kkt_power measured balance:

𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 8.8 B/F > 𝐵𝐵𝑐𝑐
𝑜𝑜𝑜𝑜𝑜𝑜

 performance degraded by load
imbalance, fix by block-cyclic
schedule

scai1, kkt_power upper limit

Sparse Matrix-Vector Multiplication (c) RRZE 2020 14

Investigating the load imbalance with kkt_power

static,2048

static

 Fewer overall instructions, (almost)
BW saturation, 50% better
performandce with load balancing

 CPI value unchanged!

Measurements with likwid-perfctr
(MEM_DP group)

SpMVM with multiple RHS & LHS Vectors

Sparse Matrix-Vector Multiplication (c) RRZE 2020 16

Multiple RHS vectors (SpMMV)

Unchanged matrix applied to multiple RHS vectors to yield multiple LHS
vectors
do s = 1,r
do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
C(i,s) = C(i,s) + val(j) *

B(col_idx(j),s)
enddo

enddo
enddo

𝐵𝐵𝑐𝑐 unchanged, no
reuse of matrix data

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(i,s) = C(i,s) + val(j) *

B(col_idx(j),s)
enddo

enddo
enddo

Lower 𝐵𝐵𝑐𝑐 due to max
reuse of matrix data

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(s,i) = C(s,i) + val(j) *

B(s,col_idx(j))
enddo

enddo
enddo

CL-friendly data
structure (row major)

Sparse Matrix-Vector Multiplication (c) RRZE 2020 17

SpMMV code balance
One complete inner (s) loop traversal:
 2𝑟𝑟 flops
 12 bytes from matrix data

(value + index)

16𝑛𝑛
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

bytes from the 𝑟𝑟 LHS updates

4

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛
bytes from the row pointer

 8𝑟𝑟𝛼𝛼 𝑟𝑟 bytes from the 𝑟𝑟 RHS reads

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(s,i) = C(s,i) + val(j) *

B(s,col_idx(j))
enddo

enddo
enddo

𝐵𝐵𝑐𝑐 𝑟𝑟 =
1
2𝑟𝑟

12 + 8𝑟𝑟𝛼𝛼 𝑟𝑟 +
16𝑟𝑟 + 4
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

=
6
𝑟𝑟

+ 4𝛼𝛼 𝑟𝑟 +
8 + 2/𝑟𝑟
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F OK so what now???

Sparse Matrix-Vector Multiplication (c) RRZE 2020 18

SpMMV code balance

Let’s check some limits to see if this makes sense!

𝐵𝐵𝑐𝑐 𝑟𝑟 =
6
𝑟𝑟

+ 4𝛼𝛼 𝑟𝑟 +
8 + 2/𝑟𝑟
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

𝑟𝑟 = 1
6+4α+

10
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

B
F

4𝛼𝛼 𝑟𝑟 +
8

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛
B
F

reassuring

Can become very small for
large 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 decoupling from
memory bandwidth is possible!

M. Kreutzer et al.: Performance Engineering of the
Kernel Polynomial Method on Large-Scale CPU-GPU
Systems. Proc. IPDPS15, DOI:
10.1109/IPDPS.2015.76

6
𝑟𝑟

B
F

http://www.ipdps.org/
http://dx.doi.org/10.1109/IPDPS.2015.76

Sparse Matrix-Vector Multiplication (c) RRZE 2020 19

Roofline analysis for spMVM

 Conclusion from the Roofline analysis
 The roofline model does not “work” for spMVM due to the RHS

traffic uncertainties
We have “turned the model around” and measured the actual

memory traffic to determine the RHS overhead
 Result indicates:

1. how much actual traffic the RHS generates
2. how efficient the RHS access is (compare BW with max. BW)
3. how much optimization potential we have with matrix reordering

 Do not forget about load balancing!
 Sparse matrix times multiple vectors bears the potential of huge

savings in data volume

 Consequence: Modeling is not always 100% predictive. It‘s all about
learning more about performance properties!

	Case study:�Sparse Matrix-Vector Multiplication
	SpMVM: The Basics
	Sparse Matrix Vector Multiplication (SpMV)
	SpMVM characteristics
	CRS matrix storage scheme
	Case study: Sparse matrix-vector multiply
	SpMVM: Performance Analysis
	Performance characteristics
	SpMV node performance model
	The “𝜶 effect”
	Determine 𝜶 (RHS traffic quantification)
	Three different sparse matrices
	Now back to the start…
	Investigating the load imbalance with kkt_power
	SpMVM with multiple RHS & LHS Vectors
	Multiple RHS vectors (SpMMV)
	SpMMV code balance
	SpMMV code balance
	Roofline analysis for spMVM

