UNIVERSITAT

El’langen Regiona[ERLANGEN-NURNBERG

Computing Center

Case study:
Sparse Matrix-Vector Multiplication

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

SpMVM: The Basics

FRIEDRICH-ALEXANDER

Sparse Matrix Vector Multiplication (SpMV) =

= Key ingredient in some matrix diagonalization algorithms
= Lanczos, Davidson, Jacobi-Davidson

= Store only N,, nonzero elements of matrix and RHS, LHS vectors with
N, (number of matrix rows) entries

“Sparse”™. N, ~ N,
= Average number of nonzeros per row: N, ,, = N,,/N,

N
General case:
— + ° >N some indirect
' addressing
required!
J

Sparse Matrix-Vector Multiplication (c) RRZE 2020

FRIEDRICH-ALEXANDER

SpMVM characteristics =

= For large problems, SpMV is inevitably memory-bound
= |ntra-socket saturation effect on modern multicores

= SpMV is easily parallelizable in shared and distributed
memory
= Load balancing
= Communication overhead

= Data storage format is crucial for performance properties

= Most useful general format on CPUs:
Compressed Row Storage (CRS)

= Depending on compute architecture

Sparse Matrix-Vector Multiplication (c) RRZE 2020

CRS matrix storage scheme =

column index

>
. 123 4 .. = val[] stores all the nonzeros (length
2 an)
<3 = col_1dx[] stores the column index
é 4 of each nonzero (length N_,)
g = row_ptr[] stores the starting index
of each new row in val [] (length: N))
\4

1|5(812[15]19] .. row_ptr[]

Sparse Matrix-Vector Multiplication (c) RRZE 2020

Case study: Sparse matrix-vector multiply F=iim

Strongly memory-bound for large data sets
Streaming, with partially indirect access:

150MP parallel do schedule(???)

do 1 = 1,N,

do J = row _ptr(i), row ptr(i+l) - 1
c(i) = c(n) + * b(col _1dx(j))

enddo

enddo

I$50MP end parallel do

Usually many spMVMs required to solve a problem

Now let's look at some performance measurements...

Sparse Matrix-Vector Multiplication (c) RRZE 2020

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

SpMVM: Performance Analysis

Performance characteristics

FRIEDRICH-ALEXANDER

Strongly memory-bound for large data sets - saturating performance

across cores on the chip

Performance seems to depend on the matrix

Can we explain
this?

Is there a
“light speed”
for SpMV?

Optimization?

Performance [Gflop/s]

| |
10-core Ivy

Bridge, static
scheduling

o—o DLR1
o—0 scai
o= Kkt _power

6 8 10
cores

277

?7?77?

Sparse Matrix-Vector Multiplication

(c) RRZE 2020

FRIEDRICH-ALEXANDER

SpMV node performance model =

Sparse MVM in do i = 1,N,
double precision do j =| row ptr(i)l row ptr(i+1) - 1
w/ CRS data storage: C(i) = C(i)[+[val(§)|*iBllcol_idx(j))
enddo
enddo
ppcrs |8 4+HBaH20/Nyyr|B 10 \ B
B, = ==\ 6+4a+ =
2 F N,) F

Absolute minimum code balance: By, = 6 % » Hard upper limit for
1 F iIn-memory
2 Imax = 6B performance: bs/Bmin

Sparse Matrix-Vector Multiplication (c) RRZE 2020

The “a effect”

FRIEDRICH-

AAAAAAAAA

DP CRS code balance

a quantifies the traffic c
for loading the RHS

a =0 2> RHS is in cache

a = 1/N,,, 2 RHS loaded once

a =1 - no cache

a > 1 - Houston, we have a problem!

“Target” performance = by /B,

Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict a?
Not in general

Simple cases (banded, block-structured): Similar to layer condition analysis

DP,CRS
B a

~ 8+4+8a+20/Ny,, B
B 2 F
= (6+4a+ =)%

- Determine a by measuring the actual memory traffic

Sparse Matrix-Vector Multiplication

(c) RRZE 2020

10

Determine a (RHS traffic quantification) =i S

10 \ B V
BDP,CRS = | 6+4a+ _ — meas
c "N _JF N_ -2F

Vheas 1S the measured overall memory data traffic (using, e.g., likwid-
perfctr)

Solve for a: 1(Vieas 10 >
a=-

N,,, - 2 bytes B N, .

Example: kkt_power matrix from the UoF collection
on one Intel SNB socket

N,, = 14.6 - 105, N, = 7.1

Vineas = 258 MB
-2 a = 0.36, aN,,,, = 2.5

- RHS is loaded 2.5 times from memory \
and: DP,CRS :
B; (@) 111 _— 11% extra traffic >
Bé)P,CRS (1/N,,) I optimization potential!

Sparse Matrix-Vector Multiplication (c) RRZE 2020

Three different sparse matrices =

FRIEDRICH-ALEXANDER

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, b = 46.6 GB/s

Matrix N N, BPY [BIF] Popt [GFIS]
DLR1 278,502 143 6.1 7.64
scail 3,405,035 7.0 8.0 5.83
kkt_power 2063494 7.08 8.0 5.83

DLR1

scail

kkt_power

Sparse Matrix-Vector Multiplication

(c) RRZE 2020

12

Now back to the start...

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Performance [Gflop/s]

w
=]
I

N
o
|

o—o DLR1

Measured memory bandwidth [Gb‘

8]]]]]
absolute ufpper limit
B =6B/F
6 scail, kkt_power upper limit
/‘ |
4 STATIC, 2048
2 -
o=o scail a
o= Kkt power
0 | | L 50F T T T T T
2 4 s b.. = 46.6 Gbyte/
core = sTT yiers

STATIC, 2048

yak

101 o=0 scai (b) 7
o= Kkt_power
I I I I I
0 2 4 6 8 10
cores

bs = 46.6 GB/s, B™" = 6B/F
Maximum spMVM performance:

Py = 7.8GF/s

DLR1 causes minimum CRS code
balance (as expected)

scail measured balance;

BMeas ~ 8,5 B/F > BP*

- good BW utilization, slightly non-
optimal a

kkt power measured balance:

BMeas ~ 88 B/F > BP*

- performance degraded by load
Imbalance, fix by block-cyclic
schedule

Sparse Matrix-Vector Multiplication

(c) RRZE 2020 13

251 (a)

Measurements with likwid-perfctr

20 -
> l (MEM_DP group)
= 1ok -

of H E NN

6

- (b) 7] FP operations -

I [Instructions retired

> Fewer overall instructions, (almost) 2
BW saturation, 50% better
performandce with load balancing

- CPI value unchanged!

Sparse Matrix-Vector Multiplication (c) RRZE 2020

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

SpMVM with multiple RHS & LHS Vectors

FRIEDRICH-ALEXANDER

Multiple RHS vectors (SpMMV) =

Unchanged matrix applied to multiple RHS vectors to yield multiple LHS

vectors q
do s = 1,r

do 1 =1, Nr do 1 =1, Nr
do J = row_ptr(i),row_ptr(i+l)-1 do J = row_ptr(i),row _ptr(i+l)-1
C(i,s) = C(r,s) + val(g) * do s = 1,r
B(col _1dx(jJ),s) C(i,s) = C(i,s) + val(g) *
enddo B(col _1dx(}),s)
enddo B, unchanged, no enddo
enddo reuse of matrix data enddo Lower B, due to max
enddo reuse of matrix data

do 1 =1, Nr
do J = row_ptr(i),row_ptr(i+l)-1
do s = 1,r
C(s,1) = C(s,1) + val(g) *
B(s,col _1dx(}))

enddo CL-friendly data

enddo _
enddo structure (row major)

Sparse Matrix-Vector Multiplication (c) RRZE 2020

16

SpMMYV code balance =i S

One complete inner (s) loop traversal:

27 flops do 1 =1, Nr])

12 bytes from matrix data 28 4 = TR RS
(value + index) C(s. i) = C(s.i) + val(G) *

—°" pytes from the r LHS updates . o(s.col_tax())

ZZT _ enddo

bytes from the row pointer enddo

8ra(r) bytes from the r RHS reads

B.(r) 1 1248 ()+16r+4B
r) =— ra(r =
¢ 2r N,,- JF

6 8+ 2/r\B
=|(—+4a(r) + — OK so what now???
r N,,- | F

Sparse Matrix-Vector Multiplication (c) RRZE 2020

SpMMYV code balance =1

FRIEDRICH-ALEXANDER

Let’'s check some limits to see if this makes sense!

6 8+ 2/r\B r=1 10 \ B
Bc(r>=(—+4a<r>+—/>— : <6+4a+N)F
T nzr

B

F

Nozr) F
N J
Y

™~ .

A | reassuring ©
|
§ 7
a\r
anr
N J
'

Qo
1| &

Can become very small for
large N,,,,- = decoupling from

memory bandwidth is possible!

M. Kreutzer et al.: Performance Engineering of the
Kernel Polynomial Method on Large-Scale CPU-GPU
Systems. Proc. IPDPS15, DOL:
10.1109/IPDPS.2015.76

Sparse Matrix-Vector Multiplication (c) RRZE 2020

18

http://www.ipdps.org/
http://dx.doi.org/10.1109/IPDPS.2015.76

FRIEDRICH-ALEXANDER

Roofline analysis for spMVM =

Conclusion from the Roofline analysis

The roofline model does not “work” for spMVM due to the RHS

traffic uncertainties

We have “turned the model around” and measured the actual

memory traffic to determine the RHS overhead

Result indicates:
how much actual traffic the RHS generates
how efficient the RHS access is (compare BW with max. BW)
how much optimization potential we have with matrix reordering

Do not forget about load balancing!

Sparse matrix times multiple vectors bears the potential of huge
savings in data volume

Consequence: Modeling is not always 100% predictive. It's all about
learning more about performance properties!

Sparse Matrix-Vector Multiplication (c) RRZE 2020

19

	Case study:�Sparse Matrix-Vector Multiplication
	SpMVM: The Basics
	Sparse Matrix Vector Multiplication (SpMV)
	SpMVM characteristics
	CRS matrix storage scheme
	Case study: Sparse matrix-vector multiply
	SpMVM: Performance Analysis
	Performance characteristics
	SpMV node performance model
	The “𝜶 effect”
	Determine 𝜶 (RHS traffic quantification)
	Three different sparse matrices
	Now back to the start…
	Investigating the load imbalance with kkt_power
	SpMVM with multiple RHS & LHS Vectors
	Multiple RHS vectors (SpMMV)
	SpMMV code balance
	SpMMV code balance
	Roofline analysis for spMVM

