
Single Instruction Multiple Data (SIMD) processing

A word on terminology
 SIMD == “one instruction  several operations”
 “SIMD width” == number of operands that fit into a register
 No statement about parallelism among those operations
 Original vector computers: long registers, pipelined execution, but no

parallelism (within the instruction)

Today
 x86: most SIMD instructions fully parallel

“Short Vector SIMD”
Some exceptions on some archs (e.g., vdivpd)

 NEC Tsubasa: 32-way parallelism but
SIMD width = 256 (DP)

SIMD terminology

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C[
0]

C[
1]

C[
2]

C[
3]

+

+

+

+

R0 R1 R2

(c) RRZE 2020SIMD 2

SIMD (c) RRZE 2020 3

Scalar execution units

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}
Scalar execution

Register widths
• 1 operand

= +

SIMD (c) RRZE 2020 4

Data-parallel execution units (short vector SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +

Best code requires vectorized
LOADs, STOREs, and arithmetic!

SIMD (c) RRZE 2020 5

Data types in 32-byte SIMD registers

Supported data types depend on actual SIMD instruction set

Scalar slot

SIMD

The Basics

SIMD (c) RRZE 2020 7

SIMD processing – Basics

Steps (done by the compiler) for “SIMD processing”

for(int i=0; i<n; i++)
C[i]= A[i] + B[i];

for(int i=0; i<n; i+=4){
C[i] = A[i] + B[i];
C[i+1]= A[i+1] + B[i+1];
C[i+2]= A[i+2] + B[i+2];
C[i+3]= A[i+3] + B[i+3];}

//remainder loop handling

LABEL1:
VLOAD R0  A[i]
VLOAD R1  B[i]
V64ADD[R0,R1]  R2
VSTORE R2  C[i]
ii+4
i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to
register R0

Add the corresponding 64 Bit entries in R0 and R1
and store the 4 results to R2

Store R2 (256 Bit) to address
starting at C[i]

This
should
not be
done
by
hand!

SIMD (c) RRZE 2020 8

SIMD processing: roadblocks

No SIMD vectorization for loops with data dependencies:

“Pointer aliasing” may prevent SIMDfication

C/C++ allows that A  &C[-1] and B  &C[-2]
 C[i] = C[i-1] + C[i-2]: dependency  No SIMD
If “pointer aliasing” is not used, tell the compiler:
–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)
restrict keyword (C only!):

for(int i=1; i<n; i++)
A[i] = A[i-1] * s;

void f(double *A, double *B, double *C, int n) {
for(int i=0; i<n; ++i)

C[i] = A[i] + B[i];
}

void f(double *restrict A, double *restrict B, double *restrict C, int n) {…}

SIMD (c) RRZE 2020 9

How to leverage SIMD: your options

Options:
 The compiler does it for you

(but: aliasing, alignment, language, abstractions)
 Compiler directives (pragmas)
 Alternative programming models for compute kernels (OpenCL, ispc)
 Intrinsics (restricted to C/C++)
 Implement directly in assembler

To use intrinsics the following headers are available:
 xmmintrin.h (SSE)
 pmmintrin.h (SSE2)
 immintrin.h (AVX)

 x86intrin.h (all extensions)

for (int j=0; j<size; j+=16){
t0 = _mm_loadu_ps(data+j);
t1 = _mm_loadu_ps(data+j+4);
t2 = _mm_loadu_ps(data+j+8);
t3 = _mm_loadu_ps(data+j+12);
sum0 = _mm_add_ps(sum0, t0);
sum1 = _mm_add_ps(sum1, t1);
sum2 = _mm_add_ps(sum2, t2);
sum3 = _mm_add_ps(sum3, t3);

}

SIMD (c) RRZE 2020 10

Vectorization compiler options (Intel)

 The compiler will vectorize starting with –O2.
 To enable specific SIMD extensions use the –x option:
 -xSSE2 vectorize for SSE2 capable machines
Available SIMD extensions:
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, ...

 -xAVX on Sandy/Ivy Bridge processors
 -xCORE-AVX2 on Haswell/Broadwell
 -xCORE-AVX512 on Skylake (certain models)
 -xMIC-AVX512 on Xeon Phi Knights Landing

Recommended option:
 -xHost will optimize for the architecture you compile on

 To really enable 512-bit SIMD with current Intel compilers you need to set:
-qopt-zmm-usage=high

SIMD (c) RRZE 2020 11

User-mandated vectorization (OpenMP 4)

 Since OpenMP 4.0 SIMD features are a part of the OpenMP standard
 #pragma omp simd enforces vectorization
 Essentially a standardized “go ahead, no dependencies here!”
 Do not lie to the compiler here!

 Prerequesites:
 Countable loop
 Innermost loop
 Must conform to for-loop style of OpenMP worksharing constructs

 There are additional clauses:
reduction, vectorlength, private, collapse, ...

for (int j=0; j<n; j++) {
#pragma omp simd reduction(+:b[j:1])
for (int i=0; i<n; i++) {

b[j] += a[j][i];
}

}

SIMD (c) RRZE 2020 12

Limits of the SIMD benefit

Registers &
execution units

L1 cache

L2 cache

L3 cache

Memory

Why does SIMD usually not give the expected
speedup?  Analyze time contributions with data
from memory (DP sum reduction on Ivy Bridge)

Scalar: 8 cy
SSE2: 4 cy
AVX: 2 cy

Required time per 8 iterations:

for (int i=0; i<size; i++){
sum += data[i];

}

2 cy for CL
transfer

Full SIMD benefit
for data in L1

Always the same
regardless of SIMD

2 cy for CL
transfer

Always the same
regardless of SIMD

3.5 cy for CL
transfer

Always the same
regardless of SIMD

SIMD (c) RRZE 2020 13

Limits of SIMD processing

8 cy
4 cy
2 cy

(1 cy)

2+2 cy 3.5 cy

Cache MemoryExecution

Scalar
SSE
AVX
(AVX512)

Make faster by
improving cache
bandwidth

On Intel x86 processors, these contributions have to be added to get
the runtime:

L1 [cy] L2 [cy] L3 [cy] Memory
[cy]

Sum
[cy]

Scalar 8 2 2 3.5 15.5
SSE2 4 2 2 3.5 11.5
AVX 2 2 2 3.5 9.5

Make faster by
improving memory
bandwidthMake faster by wider

SIMD units

diminishing returns
(Amdahl’s Law!)

SIMD (c) RRZE 2020 14

Rules and guidelines for vectorizable loops

1. Inner loop
2. Countable (loop length can be determined at loop entry)
3. Single entry and single exit
4. Straight line code (no conditionals) – unless masks can be used
5. No function calls (exception intrinsic math functions)

Better performance with:
1. Simple inner loops with unit stride (contiguous data access)
2. Minimize indirect addressing
3. Align data structures to SIMD width boundary (minor impact)

In C use the restrict keyword and/or const qualifiers and/or compiler
options to rule out array/pointer aliasing

Keep it simple, stupid!

	Single Instruction Multiple Data (SIMD) processing
	SIMD terminology
	Scalar execution units
	Data-parallel execution units (short vector SIMD)
	Data types in 32-byte SIMD registers
	SIMD
	SIMD processing – Basics
	SIMD processing: roadblocks
	How to leverage SIMD: your options
	Vectorization compiler options (Intel)
	User-mandated vectorization (OpenMP 4)
	Limits of the SIMD benefit
	Limits of SIMD processing
	Rules and guidelines for vectorizable loops

