
Efficient parallel programming
on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

ccNUMA (c) RRZE 2020 2

ccNUMA – The other affinity to care about

 ccNUMA:
 Whole memory is transparently

accessible by all processors
 but physically distributed across

multiple locality domains (LDs)
 with varying bandwidth and

latency
 and potential contention (shared

memory paths)
 How do we make sure that

memory access is always as
"local" and "distributed" as
possible?

Note: Page placement is
implemented in units of OS pages
(often 4kB, possibly more)

ccNUMA (c) RRZE 2020 3

How much does nonlocal access cost?

Example: AMD “Epyc” 2-socket system
(8 chips, 2 sockets, 48 cores):
STREAM Triad bandwidth measurements [Gbyte/s]

So
ck

et
 0

So
ck

et
 1

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

CPU node
MEM node

ccNUMA (c) RRZE 2020 4

numactl as a simple ccNUMA locality tool :
How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:
numactl --membind=<nodes> a.out # map pages only on <nodes>

--preferred=<node> a.out # map pages on <node>
and others if <node> is full

--interleave=<nodes> a.out # map pages round robin across
all <nodes>

 Examples:

for m in `seq 0 7`; do
for c in `seq 0 7`; do

env OMP_NUM_THREADS=6 \
numactl --membind=$m likwid-pin –c M${c}:0-5 ./stream

done
done

numactl --interleave=0-7 likwid-pin -c E:N:8:1:12 ./stream

 But what is the default without numactl?

ccNUMA map scan
for EPYC system

ccNUMA (c) RRZE 2020 5

ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the processor
that first touches it!
(Except if there is not enough local memory available)

Caveat: “to touch” means “to write,” not “to allocate”
 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE/sizeof(double)
huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not
mapped here yet

Mapping takes
place here

ccNUMA (c) RRZE 2020 6

Coding for ccNUMA data locality

integer,parameter :: N=10000000
double precision A(N), B(N)

A=0.d0

!$OMP parallel do
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end parallel do

integer,parameter :: N=10000000
double precision A(N),B(N)
!$OMP parallel
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
...
!$OMP do schedule(static)
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end do
!$OMP end parallel

Most simple case: explicit initialization

ccNUMA (c) RRZE 2020 7

Coding for Data Locality
 Required condition: OpenMP loop schedule of initialization must be the

same as in all computational loops
 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…
 Imposes some constraints on possible optimizations (e.g. load balancing)
 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping
 If dynamic scheduling/tasking is unavoidable, the problem cannot be solved

completely if a team of threads spans more than one LD
 Static parallel first touch is still a good idea
 OpenMP 5.0 will have rudimentary memory affinity functionality

 How about global objects?
 If communication vs. computation is favorable, might consider properly

placed copies of global data
 C++: Arrays of objects and std::vector<> are by default initialized

sequentially
 STL allocators provide an elegant solution

Node-Level Performance Engineering (c) RRZE 2020

Diagnosing bad locality
serial init.

cc
N

U
M

A
do

m
ai

n
bo

un
da

ry

 Bad locality limits scalability
(whenever a ccNUMA node
boundary is crossed)
 Just an indication, not a proof yet

 Running with numactl --
interleave might give you a hint

 Consider using performance
counters
 LIKWID-perfctr can be used to measure

nonlocal memory accesses
 Example for Intel dual-socket system

(IvyBridge, 2x10-core):

likwid-perfctr -g NUMA –C
M0:0-4@M1:0-4 ./a.out

ccNUMA (c) RRZE 2020 9

Using performance counters for diagnosis
 Intel Ivy Bridge EP node (running 2x5 threads):

measure NUMA traffic per core

 Summary output:

 Caveat: NUMA metrics vary
strongly between CPU models

+--------------------------------------+--------------+-------------+-------------+--------------+
| Metric | Sum | Min | Max | Avg |
+--------------------------------------+--------------+-------------+-------------+--------------+
Runtime (RDTSC) [s] STAT	4.050483	0.4050483	0.4050483	0.4050483
Runtime unhalted [s] STAT	3.03537	0.3026072	0.3043367	0.303537
Clock [MHz] STAT	32996.94	3299.692	3299.696	3299.694
CPI STAT	40.3212	3.702072	4.244213	4.03212
Local DRAM data volume [GByte] STAT	7.752933632	0.735579264	0.823551488	0.7752933632
Local DRAM bandwidth [MByte/s] STAT	19140.761	1816.028	2033.218	1914.0761
Remote DRAM data volume [GByte] STAT	9.16628352	0.86682464	0.957811776	0.916628352
Remote DRAM bandwidth [MByte/s] STAT	22630.098	2140.052	2364.685	2263.0098
Memory data volume [GByte] STAT	16.919217152	1.690376128	1.69339104	1.6919217152
Memory bandwidth [MByte/s] STAT	41770.861	4173.27	4180.714	4177.0861
+--------------------------------------+--------------+-------------+-------------+--------------+

likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

About half of the overall
memory traffic is caused by
the remote domain!

 Parallel init: Correct parallel initialization
 LD0: Force data into LD0 via numactl –m 0
 Interleaved: numactl --interleave <LD range>

OpenMP STREAM triad on a dual AMD Epyc 7451
(6 cores per LD)

ccNUMA (c) RRZE 2020 11

Summary on ccNUMA issues
 Identify the problem
 Is ccNUMA an issue in your code?
 Simple test: run with numactl --interleave

 Apply first-touch placement
 Look at initialization loops
 Consider loop lengths and static scheduling
 C++ and global/static objects may require special care

 NUMA balancing is active on many Linux systems today
 Automatic page migration
 Slow process, may take many seconds (configurable)
 Not a silver bullet
 Still a good idea to do parallel first touch

 If dynamic scheduling cannot be avoided
 Consider round-robin placement as a quick (but non-ideal) fix
 OpenMP 5.0 will have some data affinity support

	Efficient parallel programming �on ccNUMA nodes
	ccNUMA – The other affinity to care about
	How much does nonlocal access cost?
	numactl as a simple ccNUMA locality tool :�How do we enforce some locality of access?
	ccNUMA default memory locality
	Coding for ccNUMA data locality
	Coding for Data Locality
	Diagnosing bad locality
	Using performance counters for diagnosis
	OpenMP STREAM triad on a dual AMD Epyc 7451 �(6 cores per LD)
	Summary on ccNUMA issues

