
Efficient parallel programming 
on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy
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ccNUMA – The other affinity to care about

 ccNUMA:
 Whole memory is transparently 

accessible by all processors
 but physically distributed across 

multiple locality domains (LDs)
 with varying bandwidth and 

latency
 and potential contention (shared 

memory paths)
 How do we make sure that 

memory access is always as 
"local" and "distributed" as 
possible?

Note: Page placement is 
implemented in units of OS pages 
(often 4kB, possibly more)
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How much does nonlocal access cost?

Example: AMD “Epyc” 2-socket system
(8 chips, 2 sockets, 48 cores):
STREAM Triad bandwidth measurements [Gbyte/s]
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0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

CPU node
MEM node
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numactl as a simple ccNUMA locality tool :
How do we enforce some locality of access?

 numactl can influence the way a binary maps its memory pages:
numactl --membind=<nodes> a.out # map pages only on <nodes>

--preferred=<node> a.out # map pages on <node> 
# and others if <node> is full

--interleave=<nodes> a.out # map pages round robin across
# all <nodes>

 Examples:

for m in `seq 0 7`; do
for c in `seq 0 7`; do 

env OMP_NUM_THREADS=6 \
numactl --membind=$m likwid-pin –c M${c}:0-5 ./stream

done
done

numactl --interleave=0-7 likwid-pin -c E:N:8:1:12 ./stream

 But what is the default without numactl?

ccNUMA map scan
for EPYC system
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ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the processor 
that first touches it!
(Except if there is not enough local memory available)

Caveat: “to touch” means “to write,” not “to allocate”
 Example: 

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE/sizeof(double)
huge[i] = 0.0;  

 It is sufficient to touch a single item to map the entire page

Memory not 
mapped here yet

Mapping takes 
place here
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Coding for ccNUMA data locality

integer,parameter :: N=10000000
double precision A(N), B(N)

A=0.d0

!$OMP parallel do
do i = 1, N

B(i) = function ( A(i) )
end do
!$OMP end parallel do

integer,parameter :: N=10000000
double precision A(N),B(N)
!$OMP parallel 
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
...
!$OMP do schedule(static)
do i = 1, N

B(i) = function ( A(i) )
end do
!$OMP end do
!$OMP end parallel

Most simple case: explicit initialization 
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Coding for Data Locality
 Required condition: OpenMP loop schedule of initialization must be the 

same as in all computational loops
 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to 

be sure…
 Imposes some constraints on possible optimizations (e.g. load balancing)
 Presupposes that all worksharing loops with the same loop length have the 

same thread-chunk mapping
 If dynamic scheduling/tasking is unavoidable, the problem cannot be solved 

completely if a team of threads spans more than one LD
 Static parallel first touch is still a good idea
 OpenMP 5.0 will have rudimentary memory affinity functionality

 How about global objects?
 If communication vs. computation is favorable, might consider properly

placed copies of global data
 C++: Arrays of objects and std::vector<> are by default initialized 

sequentially
 STL allocators provide an elegant solution
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Diagnosing bad locality
serial init.
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 Bad locality limits scalability 
(whenever a ccNUMA node 
boundary is crossed)
 Just an indication, not a proof yet

 Running with  numactl --
interleave might give you a hint

 Consider using performance 
counters
 LIKWID-perfctr can be used to measure 

nonlocal memory accesses
 Example for Intel dual-socket system 

(IvyBridge, 2x10-core):

likwid-perfctr -g NUMA –C 
M0:0-4@M1:0-4 ./a.out
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Using performance counters for diagnosis
 Intel Ivy Bridge EP node (running 2x5 threads):

measure NUMA traffic per core

 Summary output:

 Caveat: NUMA metrics vary
strongly between CPU models

+--------------------------------------+--------------+-------------+-------------+--------------+
|                Metric |      Sum |     Min     |     Max     |      Avg |
+--------------------------------------+--------------+-------------+-------------+--------------+
|       Runtime (RDTSC) [s] STAT       |   4.050483   |  0.4050483  |  0.4050483  |   0.4050483  |
|       Runtime unhalted [s] STAT      |    3.03537   |  0.3026072  |  0.3043367  |   0.303537   |
|           Clock [MHz] STAT           |   32996.94   |   3299.692  |   3299.696  |   3299.694   |
|               CPI STAT               |    40.3212   |   3.702072  |   4.244213  |    4.03212   |
|  Local DRAM data volume [GByte] STAT |  7.752933632 | 0.735579264 | 0.823551488 | 0.7752933632 |
|  Local DRAM bandwidth [MByte/s] STAT |   19140.761 |   1816.028  |   2033.218  |   1914.0761  |
| Remote DRAM data volume [GByte] STAT |  9.16628352  |  0.86682464 | 0.957811776 |  0.916628352 |
| Remote DRAM bandwidth [MByte/s] STAT |   22630.098 |   2140.052  |   2364.685  |   2263.0098  |
|    Memory data volume [GByte] STAT   | 16.919217152 | 1.690376128 |  1.69339104 | 1.6919217152 |
|    Memory bandwidth [MByte/s] STAT   |   41770.861 |   4173.27   |   4180.714  |   4177.0861  |
+--------------------------------------+--------------+-------------+-------------+--------------+

likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

About half of the overall
memory traffic is caused by
the remote domain!



 Parallel init: Correct parallel initialization
 LD0: Force data into LD0 via  numactl –m 0
 Interleaved: numactl --interleave <LD range>

OpenMP STREAM triad on a dual AMD Epyc 7451 
(6 cores per LD)
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Summary on ccNUMA issues
 Identify the problem
 Is ccNUMA an issue in your code?
 Simple test: run with numactl --interleave 

 Apply first-touch placement
 Look at initialization loops
 Consider loop lengths and static scheduling
 C++ and global/static objects may require special care

 NUMA balancing is active on many Linux systems today
 Automatic page migration
 Slow process, may take many seconds (configurable)
 Not a silver bullet
 Still a good idea to do parallel first touch

 If dynamic scheduling cannot be avoided
 Consider round-robin placement as a quick (but non-ideal) fix
 OpenMP 5.0 will have some data affinity support
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