
Q/A Sheet: Node-Level Performance Engineering

•

1 Question Answer

2
Ex. How do I download the
tutorial materials?

Emails have been sent out with links where you can
download the presentation notes and examples.

3

Could someone type out the
download URL again?
Thanks.

http://tiny.cc/NLPE-SC20

5

I am interested in knowing
the Flops rating for AMD
FP64 vs NVidia A100 F64?

Performance FP64 for AMD MI50 is approx 6.7 TF/s which is
approx 1/3 of A100

6

What are the benefits of
running in Sub NUMA
Clustering mode?

Benefits: a little less latency and a little more saturated
memory bandwidth. Downside: more complex node topology,
you have to deal with the NUMA structure.

7

What new performance
features do you see coming
for the next generation of
cpus?

There are three ways to speed up stored program computers:
Increase clock speed (the gold option, everything gets faster,
still alive with turbo mode), going parallel (the main driver in
the last decade with SIMD and multi-core), and adding
special purpose hardware. Of course we cannot look in the
future but my guess is we will see more special-purpose
solutions in the future. This can be special-purpose execution
units or coprocessors.

8

Filling the pipeline seems to
be key to maximizing
performance, but many
algorithms rely on branching
and dependencies. Are there
situations where using a less
'efficient', non-branching
algorithms is more efficient
on modern processors? Or
perhaps techniques for
reducing branching?

Complicated question. In many cases, the more efficient (i.e.,
work saving) algorithm is harder to optimize for the
architecture but still better overall in terms of time to
solution. But there are exceptions where algorithms with
more work can actually solve a problem faster because they
are better adapted to the hardware. Example:
https://dx.doi.org/10.1137/140976017

9

Do you have any notes on
type of applications
workloads can benefit
NUMA-feature NPS at boot
time?

NPS != 1 will provide a little more memory bandwidth. Hence,
memory-bound applications will benefit if they use proper
page placement, i.e., if (almost) all memory accesses are to
the local domain.

10

Will we have access to this
recording? Having poor
streaming issues on my end.

Yes, a recording will be available on Wednesday (I think), and
you can view it for 6 months as an on-demand stream.

11 Is likwid-pin cpuset-aware?

If it detects a cpuset, it will use "logical pinning with the set,"
i.e., it will pin threads to consecutive hardware threads within
the set. So yes, it is cpuset aware, but you'll get most out of it
when the whole node is yours.

12

Does likwid-pin have a
mechanism to skip
placement of lightweight
(non-compute) threads?

Yes. There is the "-s" option with which you can specify a
"skip mask." A set bit in this mask denotes a thread to be
skipped, i.e., not pinned.

13

On machines where you have
more than is needed cores to
handle a fixed work load,
does it make sense to
disable cores in order to
maximize overclocking?

I think my answer was not 100% to the point. Of course, on
modern, turbo-enabled multicore CPUs you can use fewer
cores with higher frequency because there is more headroom
in the power envelope. Now the really interesting question is,
how do you burn the least energy without compromising time
to solution? That's a complicated question because it
depends on the exact way the turbo frequencies are set by

https://www.google.com/url?q=http://tiny.cc/NLPE-SC20&sa=D&ust=1605037937483000&usg=AFQjCNGwsZe1mMMLd49trdyt-MKTEWmFFA
https://www.google.com/url?q=https://dx.doi.org/10.1137/140976017&sa=D&ust=1605037937484000&usg=AFQjCNFqvQ8rqdQDAc08cavcKEDsvKyJOg

•

the processor. Usually, if the workload is scalable across
cores, there is an optimal clock speed for minimum energy to
solution. If you want minimum time to solution, just use all
cores and crank it up to the limit. If you _really_ just want m
out of n cores, and energy is not at all important, then yes,
use m cores, pin your threads, and leave the others idle to go
into some power-saving state.

14

Is there a way to avoid
OpenMP barrier or say
reduce the barrier
performance impact?

The way to reduce the barrier impact is to avoid barriers :-)
Seriously, indeed it can be a challenge to fight barrier
overhead. There is no silver bullet except to try and think
about how you could move more work between successive
barriers to reduce their relative cost. Sometimes it can help to
think more in terms of tasks instead of parallel loops, but this
is by no means a general strategy.

15

What are the reasons that the
CPU vs GPU peak
performance is only 4-8x? Is
not being able to parallelize
workloads to so many
threads one of major
reasons?

This is the ratio as given by the capabilities of the hardware;
you see a similar ratio when running LINPACK. You do need
more parallelism to get there on the GPU because it has no
automatic latency-hiding mechanisms (like deep out-of-order
execution or prefetching).

16

Could you give a very brief
example where you would
want to use the outer level
cache group thread domain
in LIKWID?

Sometimes the code needs a certain amount of cache to
work optimally (as is the case for stencil codes and also for
sparse matrix-vector multiplication, which will both be
covered in the second part of the tutorial). Then you'd want to
restrict the number of threads running per LLC domain. Also
it's useful for microbenchmarking if you want to, e.g., look at
the LLC bandwidth.

17

What would you suggest for
digging deeper into
measuring the performance
relationships between the
CPUs and other node PCI
devices, such as high-speed
(>= 40-Gbps) network
interface devices (to better
understand the bottlenecks
impacting bandwidth-bound
applications)?

This is a typical case for microbenchmarking. Write a simple
benchmark that mimics the way your real application uses a
data path. The insight thus gathered can then be used to
understand the behavior of real applications. If you know how
long certain things take, you can find out which ones are
bottlenecks.

18

In the likwid-pin demo using
the bandwidth test, at the
higher core counts the
second column of bandwidth
results was sometimes
significantly lower than the
first column, why was that?

I'm not sure I understand the question correctly. The second
column in the bwbench output is the MFlop/s number, and
it's related to the bandwidth via the intensity (flops/byte).
Probably you mean that some benchmarks (such as copy)
seem to have lower bandwidth than others (such as update).
This is because copy has a write-allocate that uses 1/3 of the
bandwidth, but the benchmark has no way of knowing
whether a write-allocate actually happens. This is why loops
with (relatively speaking) more stores appear to have lower
bandwidth, but if you add the write-allocate then all of them
have roughly the same bandwidth.

19

Is it always safe to sample
system-wide even when the
application is instrumented
internally, or does concurrent
use of these performance
counters by multiple agents

If by "safe" you mean that you can rely on the results to be
correct, then you should use the "perf" backend, which works
per process so that system monitoring will not interfere with
your measurements. If you use the direct MSR access, you
may get problems.

•

impose any risks which need
to be mitigated?

20

how do you ascertain that
you don't incur cache
capacity misses (other than
by experimetation)?

The analysis assumed the minimum data traffic that is
theoretically possible. If the performance is then close to the
Roofline prediction, this is already an indication that the
actual data traffic is close to the minimum. Using
performance counters (via likwid-perfctr, for example) you
can measure the traffic directly and further validate the
model. As mentioned in the talk about performance counters,
we usually don't think in terms of cache misses but in terms
of resource utilization.

21

Did you compare the
example versus the case
where M and N were not
known at compilation time?
Curious as to how much
slower it would be.

Yes - depending on the parallelization and the compiler
version and switches performs penalties of 10x and higher
show up for the "general" version. To do code optimization
(mood unrolling, interchange) and SIMD vectorization, the
compiler must make assumptions about the loop length - if
not known - and mostly fails to produce appropriate code for
our parameter regime. As seen from the comparison with mkl
also the vendor library is not well prepared for that parameter
space. Automatic code generation is useful (and actually
used) to build problem specific libraries in this application.

22

so roughly how much of the
improvement was due to the
telling the compiler the
values of N and M vs the new
way of parallelizing the K
loop?

I do not have exact numbers here but if you chose a different
parallelization strategy (loop for parallelization) scalability is
strongly limited by the short dimensions. On the other hand
knowing the value of M and N boosts single thread
performance. So basically both effects multiply until you
reach the roofline limit when increasing the number of
execution threads. If you only apply one of the "optimizations"
you will not be able to saturate the memory bandwidth and
reach the roofline limit.

23

Is there any reason not to use
nontemporal stores for the
stencil example?

You are absolutely right. This can be done / enforced and will
reduce the overall code balance by 8 B/LUP. On the single
core you will thus not see a strong performance increase - on
older Intel architecture you will even get worse single core
performance. However, for the OpenMP parallel code -
saturating the memory bandwidth - you will get a
performance increase in line with the reduction in the code
balance.

24

Why is there a peak (MLUPs)
at jmax of 1000 in the
previous graph?

Until 1000^2 the full data set fits into L3 cache and you are
decoupled from main memory. You can see this also in the
balance measurements on slide 18 where the measured code
balance for problems less equal 1000 is zero as the full data
set fits into the large L3 cache

25

Are there more reasons to
the flattening of the graph at
more cores than the layer
condition? No overhead with
more cores?

The problem sizes we're dealing with here are such that the
typical OpenMP overhead (mostly the barrier at the end of the
workshared loop) is entirely negligible. The barrier costs
(depending on the number of cores and the implementation
in the OMP runtime) a couple of thousand cycles. A full
sweep takes much longer than that. The flattening is really
just caused by the memory bandwidth saturation here.

26

If you would please talk more
about why you did not (or
could not) create any test
cases that would fit into L1?

In case of the 2d 5pt stencil this is possible, and you can
analyze the code and predict the performance if the inner
loop is sufficiently long. We don't include such cases in the
tutorial because in-cache modeling is much harder than
straighforward Roofline analysis, especially when the data is
in L2 or L3. Basically you need more advanced models
because the basic Roofline assumption that all data transfers

•

overlap with execution is not true for in-cache scenarios,
especially on Intel CPUs.

27

Where does 3.5 cycles for
loading from memory come
from (in the SIMD
discussion)? Wouldn't this
typically be 60+ ns or so?

The 60+ ns are the main memory latency. In our model we
assume that latency can be ignored because prefetchers are
working perfectly. So the transfer time over the memory bus
is determined completely by the bandwidth. The CPU we
used for slide 12 has a memory bandwidth of 40 Gbyte/s and
a clock speed of 2.2 GHz. One CL transfer (64 byte) thus
takes 64/(40*10⁹)*2.2*10⁹ cycles = 3.5 cycles. Since the
transfers through the cache hierarchy do not overlap, a single
core cannot achieve the 40 Gbyte/s because the other
transfers also take time, they add to the 3.5 cycles.

28

are there circumstances
where is is still beneficial to
vectorize even when the data
set is much larger than cache
and the operations are
completely memory
bandwidth-bound?

When you really know that a loop is memory bound, the first
thing to do is to try and reduce the amount of data
transferred to/from the memory, so SIMD is out of the game.
There is one exception: Nontemporal stores (a.k.a. streaming
stores) only exist in SIMD variants. Thus, a loop with a write-
allocated store stream is only a candidate for NT stores if it
can also be vectorized. So in this particular case the SIMD
vectorization can actually do what you need, i.e., reduce the
amount of data loaded from memory.

29

Does likwid-perfctr have any
built-in groups for looking at
false cacheline sharing?

Yes, on some architectures. E.g., on Ivy Bridge there is the
FALSE_SHARE group.

30

How does one control the
automatic page migration in
the NUMA balancing you
mentioned?

To deactivate it under Linux: "echo 0 >
/proc/sys/kernel/numa_balancing". Use 1 to reactivate it.

31

If the memory is initialized
(not parallely) and if the
threads are going to use it
locally repeatedly, won't it get
cached locally instead of
accessing it remotely all the
time in ccNUMA. So
shouldn't it be just a one time
traffic?

Yes. The whole ccNUMA issue is only relevant if the code is
memory bound. If you have so much cache reuse as to
decouple entirely from the memory bandwidth, ccNUMA
effects become marginal.

32

I am heavy on using taskset
and assumed that I will get
the mem within the task's
Numa domain as opposed to
using numactl. I assume that
is the case, right?

The NUMA issue is independent of which tool you use for
pinning your threads. Note, however, that taskset and
numactl do not pin individual OpenMP threads; they only
restrict the movement of the whole team of threads to the set
indicated. Hence, if your team of threads spans multiple
ccNUMA domains, taskset and numactl are not sufficient to
enforce good locality.

33

Are there any other
bottlenecks which arise when
you have many more
threads/cores/nodes than 8
as you experimented when
you initialize parallely?

I assume you are referring to the experiment where we
compare parallel placement with round-robin and LD0
placement. As a general rule, data access becomes more
"inhomogeneous" as the number of domains increases, so
you get larger penalties when not doing optimal placement. If
you ask whether it is possible to build very large machines
and still scale: There are examples of systems with hundreds
of ccNUMA domains, and if you know your first touch rule,
these machines scale just fine (e.g., SGI Altix/Ultraviolet).

34

Does likwid-perfctr account
for masking of AVX512
instructions?

The events on Intel CPUs do not allow for counting individual
SIMD lanes being active. You can only count instructions.
This is not a limitation of likwid-perfctr but of the
performance counting infrastructure on the CPU. Would be

•

nice to have since it would allow proper counting of flops, but
we asked Intel about it and they say it's "technically
impossible." So there.

35

Would you please describe
the performance impact of
adding memory channels (ie:
going from 4 to 6 per socket),
in the cases where cores
access memory outside of
their local NUMA domain?

If the chip has more memory channels you get more
bandwidth. The ccNUMA problem stays the same. Of course,
if the memory bandwidth is increased but the inter-domain
connections stay the same (bandwidth wise), then the
problem with nonlocal access is aggravated.

