
YaskSite: Stencil Optimization Techniques Applied
to Explicit ODE Methods on Modern Architectures

Christie L. Alappat
University of Erlangen-Nuremberg

Erlangen, Germany
christie.alappat@fau.de

Johannes Seiferth
University of Bayreuth

Bayreuth, Germany
johannes.seiferth@uni-bayreuth.de

Georg Hager
University of Erlangen-Nuremberg

Erlangen, Germany
georg.hager@fau.de

Matthias Korch
University of Bayreuth

Bayreuth, Germany
matthias.korch@uni-bayreuth.de

Thomas Rauber
University of Bayreuth

Bayreuth, Germany
thomas.rauber@uni-bayreuth.de

Gerhard Wellein
University of Erlangen-Nuremberg

Erlangen, Germany
gerhard.wellein@fau.de

Abstract—The landscape of multi-core architectures is growing
more complex and diverse. Optimal application performance
tuning parameters can vary widely across CPUs, and finding
them in a possibly multidimensional parameter search space
can be time consuming, expensive and potentially infeasible. In
this work, we introduce YaskSite, a tool capable of tackling
these challenges for stencil computations. YaskSite is built upon
Intel’s YASK framework. It combines YASK’s flexibility to deal
with different target architectures with the Execution-Cache-
Memory performance model, which enables identifying optimal
performance parameters analytically without the need to run the
code. Further we show that YaskSite’s features can be exploited
by external tuning frameworks to reliably select the most efficient
kernel(s) for the application at hand. To demonstrate this, we
integrate YaskSite into Offsite, an offline tuner for explicit ordi-
nary differential equation methods, and show that the generated
performance predictions are reliable and accurate, leading to
considerable performance gains at minimal code generation time
and autotuning costs on the latest Intel Cascade Lake and AMD
Rome CPUs.

Index Terms—Performance modeling; ECM model; Stencil
optimization; YASK; Autotuning; PIRK methods

I. INTRODUCTION

The efficiency of applications from scientific computing
is in general strongly dependent on characteristics of the
targeted hardware platform and application-specific parameters.
To achieve a high efficiency, such applications need to be
adapted to the specific hardware platform anew. Typically, this
adaptation process includes (i) applying program optimization
techniques, such as loop blocking or loop unrolling, to the
heavy-workload kernels of the application and (ii) selecting
suitable parameter values for these optimizations, such as loop
unrolling factors or block sizes. Commonly, these optimizations
are employed using code generation techniques; autotuning is
used to select the optimal parameter values. However, often
there is a large search space of possible optimization variants
with corresponding parameter values within which the most
efficient configuration(s) need to be determined. In a landscape
of modern multi-core architectures that are getting more diverse,
implementing and testing all these variants for each new

architecture is cumbersome and time consuming, especially
when done by hand.

In this work, we introduce YaskSite, a tool capable of
automating this complex adaptation process for stencil-based
computations. YaskSite can generate stencil codes with various
optimizations and can automatically tune these codes using
an analytical performance model. This enables YaskSite to
produce near-optimal stencil/streaming code with practically
no tuning overhead, as would be incurred in standard runtime
testing.

A. Related Work

An established solution for automating the identification
of efficient code variant(s) is autotuning (AT). In recent
years, many AT approaches have been proposed for different
application areas [1]. In general, AT techniques are roughly
divided into two groups: Online AT approaches, such as Active
Harmony [2] and ATF [3], are applied at runtime—when all
input is known—which allows to consider all influences of
the input data during variant selection. In contrast, Offline AT
selects the supposedly most efficient variant(s) at compile/in-
stallation time and is thus well suited when the execution
behavior does not depend on input data. For example, dense
linear algebra problems can be tuned offline with ATLAS [4]
and PhiPAC [5]. The data independence of stencil computations
allows us to tune them offline in this work.

Since a major challenge in AT is identifying efficient
variants from the potentially large search space, many solutions
have been proposed [1]. This includes brute-force exhaustive
search and selective search space scans using optimization
methods like hill climbing [2], genetic algorithms [6] or
hierarchical approaches as in [7]. Another approach is filtering
out inefficient variants using performance models. These
models describe the interaction of code and hardware using
simplified application and machine models. We follow this
strategy as its effectiveness for stencil and streaming codes
has been demonstrated [8]. Two established analytic models
for steady-state loop codes are the Roofline model [9] and

978-1-7281-8613-9/21 c© 2021 IEEE CGO 2021, Virtual, Republic of Korea

Accepted for publication by IEEE. c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

174

the Execution-Cache-Memory (ECM) performance model [10].
Both models are applicable to the memory-bound kernels
considered in this work. The ECM model, however, requires
far less phenomenological input, so we favored it in this
work. Kerncraft [11] can provide ECM predictions for stencil
and streaming kernels but does not support the optimizations
considered in this work.

AT has to be supported with the generation of optimized code.
Intense research has been conducted for stencil algorithms in
this regard. The majority of optimizations focus on reducing
the data traffic via spatial and temporal tiling [12], [13], [14],
[15], [16], [17]. For long-range stencils, work on improving
the in-core performance by SIMD vectorization has also been
carried out [18], [19]. Frameworks like YASK [19], PATUS
[16] or Girih [20] support some of these optimizations along
with AT. Most of them are based on well-known approaches
like genetic algorithms and hill-climbing. In this work we use
the YASK framework as the backend.

B. Main Contributions

The main contributions of this paper are:
(i) We propose an analytical tuner for stencil computations

(YaskSite), which links YASK with an analytic performance
model based on the ECM model. We demonstrate that YaskSite
is capable of analytically and automatically detecting near-
optimal optimization parameters without requiring any runtime
tests and compare it with YASK’s built-in tuner.

(ii) We provide a performance model for YASK’s stencil
code that considers spatial tiling and vector folding optimiza-
tions. To this end, we provide a revised performance model
for spatial tiling that includes victim caches and we introduce
an analytical performance model for vector folding, which to
our knowledge is the first analysis of this kind. The model is
further verified for two stencil algorithms, Heat and Wave, on
Intel Cascade Lake (CLX) and AMD Rome (ROME).

(iii) We demonstrate that the insights gained from the
performance model can guide code optimization by improving
the performance of a specific YASK-generated stencil by a
factor of 2.5 on ROME.

(iv) We integrate YaskSite into an existing offline autotuning
framework for explicit ODE (PIRK) methods (Offsite). In
particular, we expand Offsite to incorporate YaskSite-optimized
stencil code variants and integrate YaskSite’s performance
model to estimate and reliably rank the performance of these
variants.

C. Outline

Section II introduces the selected example use case (PIRK
methods) and Section III details our testbed. In Section IV,
we introduce YASK and discuss how YaskSite expands YASK
by integrating performance modeling. Section V describes
YaskSite’s performance modeling workflow. In Section VI, we
give an overview of the Offsite autotuning approach and discuss
how YaskSite’s features are integrated to expand Offsite’s
scope of application. Section VII studies the accuracy of the
model by comparing performance predictions for PIRK method

c −6 c

c

c c

c

(a) Heat3D.

c2 c1 c0 c1 c2

c2

c1

c1

c2

c1

c2

c1

c2

(b) Wave3D (r = 2).

Fig. 1: Characteristic stencil of ODE problems Heat3D and Wave3D.

implementations to measurements in different application
scenarios on different target platforms. Finally, Section VIII
and Section IX summarize and conclude the paper.

II. CASE STUDY: PIRK METHODS

We study parallel iterated Runge-Kutta (PIRK) methods [21]
as a representative example of the general class of explicit
ODE methods. PIRK methods solve ODE systems

y′(t) = f(t,y(t)) , y(t0) = y0 , (1)

for an integration interval [t0, te] by performing a series of
time steps tκ = t0 + κ · h until the end of the integration
interval (te) is reached. Here, f is the right-hand-side function
(RHS), y0 is the initial value of the ODE system and h is the
step size.

A. Mathematical Background

PIRK methods are one-step methods, i.e., in each time step
tκ a new approximation yκ+1 for the unknown solution y
is computed from the previous approximation yκ only. PIRK
methods use an explicit predictor–corrector process with a fixed
number of m = p−1 corrections, where p is the order of the s-
stage implicit RK method used as corrector method. The input
vector yκ of the time step is chosen as initial approximation
(predictor) for the stages Y1, . . . ,Ys:

Y
(0)
l = yκ, l = 1, . . . , s . (2)

Next, the corrector method of order p with its Butcher table
entries, i.e. coefficient matrix A = (aij) ∈ Rs,s, weight vector
b = (bi) ∈ Rs and node vector c = (ci) ∈ Rs, is applied
m = p− 1 times, i.e. for k = 1, . . . ,m:

Y
(k)
l = yκ + hκ

∑s

i=1
aliF

(k−1)
i , l = 1, . . . , s (3a)

with

F
(k−1)
i = f

(
tκ + cih,Y

(k−1)
i

)
. (3b)

After all corrector steps are computed,

yκ+1 = yκ + hκ
∑s

i=1
biF

(m)
i (4)

yields the output approximation yκ+1.
In this work, we use Radau II A(7) with s = 4 and p = 7

(m = 6) as corrector method.

175

1 //BARRIER
2 for(int k=0; k<m; ++k){
3 RHS
4 //BARRIER
5 LC
6 //BARRIER
7 }
8 RHS
9 //BARRIER
10 App
11 //BARRIER
12 Up

a: Implementation A.

1 //BARRIER
2 for(int k=0; k<m; ++k){
3 RHS_LC
4 //BARRIER
5 }
6 RHS_App_Up

b: Implementation F.

Listing 1: Schemes of two PIRK method implementations. Implicit OpenMP
barriers are shown for reference.

B. ODE Problems

We study two ODE problems whose stencil-like RHS allows
to explore YaskSite’s stencil optimization opportunities on
fundamental equations for various scientific fields:

(i) Heat3D is a 3D heat equation with Dirichlet boundary
conditions and describes the temperature distribution in a given
volume over time. Its RHS is characterized by a seven-point
stencil (Fig. 1a) with radius r = 1 on a cubic grid (N = 3

√
n)

and a problem-dependent coefficient c ∈ R.
(ii) Wave3D1 is a 3D wave equation with Dirichlet boundary

conditions, which describes, e.g., the propagation of seismic
waves. For a radius r Wave3D stencil the pressure at the next
time step t+ 1 is given by:

yt+1
x,y,z = 2 · ytx,y,z − yt−1

x,y,z + vx,y,z · (c0 · ytx,y,z
+
∑r

i=1
ci · (ytx−i,y,z + ytx+i,y,z + ytx,y−i,z

+ ytx,y+i,z + ytx,y,z−i + ytx,y,z+i))

(5)

where ytx,y,z and yt−1
x,y,z are the pressure at the current and

previous time steps and v is the velocity vector. The coefficients
of the finite differences on a cubic grid (N = 3

√
n) are given

by ci ∈ R, i ∈ {1, . . . , r}. The RHS is characterized by a
(6r + 1)-point stencil corresponding to the yt vector (Fig. 1b).

C. PIRK Solvers

We consider two selected shared-memory implementations
for which the predictability of their performance by the ECM
model has been discussed before [8], [22]:

(i) Implementation A (Listing 1a) is a vector-oriented, easy
to predict implementation that was thoroughly studied in [8]. It
splits equations (2)–(4) into separate kernels. A single corrector
iteration k (3) comprises two non-overlapping kernels: Kernel
LC (Listing 2a) covers the linear combination (3a), while kernel
RHS (Listing 2b) evaluates the RHS functions (3b) of the ODE
problem. For kernel LC, there are six possible permutations of
loops i, j and l. In this work, we only consider permutation
j-i-l which was most performant in [8]. To compute the next
approximation of the solution (4), kernels App (Listing 2c) and
Upd (Listing 2d), are used.

(ii) Implementation F (Listing 1b) is derived from A by loop
fusion and significantly outperformed A in [22]; however, it

1Also known as Iso3DFD (isotropic 3D finite-difference) [6].

1 for(j•=0; j•<N; ++j•) {
2 for(i=0; i<s; ++i) { // unrolled second
3 for(l=0; l<s; ++l) { // unrolled first
4 tmp_arr[l] += A[l][i] * F[i][jx][jy][jz]
5 }
6 }
7 for(l=0; l<s; ++l) { // unrolled third
8 Y[l][jx][jy][jz] = tmp_arr[l] * h +

y_old[jx][jy][jz]
9 }
10 }

a: Kernel LC.

1 for(j•=0; j•<N; ++j•)
2 for(i=0; i<s; ++i) // unrolled
3 F[i][jx][jy][jz] = RHS

b: Kernel RHS.

1 for(j•=0; j•<N; ++j•) {
2 for(i=0; i<s; ++i) { // unrolled
3 tmp = tmp + b[i] * F[i][jx][jy][jz]
4 }
5 dy[jx][jy][jz] = tmp
6 }

c: Kernel App.

1 for(j•=0; j•<N; ++j•) {
2 y_new[jx][jy][jz] = y_old[jx][jy][jz] + h *

dy[jx][jy][jz]
3 }

d: Kernel Up.

1 for(j•=0; j•<N; ++j•) {
2 for(i=0; i<s; ++i) { // unrolled second
3 tmp = RHS(...)
4 for(l=0; l<s; ++l) { // unrolled first
5 tmp_arr[l] += A[l][i] * tmp
6 }
7 }
8 for(l=0; l<s; ++l) { // unrolled third
9 Y[l][jx][jy][jz] = tmp_arr[l] * h +

y_old[jx][jy][jz]
10 }
11 }

e: Kernel RHS_LC.

1 for(j•=0; j•<N; ++j•) {
2 for(l=0; l<s; ++l) { // unrolled
3 tmp += b[l] * RHS(...)
4 }
5 y_new[jx][jy][jz] = y_old[jx][jy][jz] + h * tmp
6 }

f: Kernel RHS_App_Up.

Listing 2: Kernels2 used by PIRK implementations A and F.3

was not yet studied on ODE problems with a 2D/3D stencil-like
RHS. The two kernels executed per corrector step iteration,
RHS and LC, are fused into a single kernel RHS_LC (Listing
2e). The computation of the next solution approximation is
covered by kernel RHS_App_Up (Listing 2f) which is derived
by fusing kernels RHS, App and Up.

III. TESTBED

The experiments are conducted on the two latest x86
architectures from Intel and AMD, Intel Cascade Lake (CLX)
and AMD Rome (ROME) (see Table I for basic hardware
characteristics). For minimal variance and best results [23],

2The ‘•’ in a for loop denotes that the loop has to be repeated in every
spatial direction, with directions x, y and z replacing the ‘•’.

3The parallelization is carried over the j• loop and the scheduling strategy
is left to the library actually running the kernel, YaskSite in our case.

176

TABLE I
KEY SPECIFICATIONS OF TARGET PLATFORMS.

Name CLX ROME

Microarchitecture Intel Cascade Lake-SP AMD Zen2
CPU Xeon Gold 6248 EPYC 7452
De-facto frequency 2.5 GHz 2.35 GHz
Cores 20 32
SIMD extensions AVX-512 AVX-2

L1 cache 20×32 KiB 32×32 KiB
L2 cache 20×1 MiB 32×512 KiB
L3 cache 28 MiB 8×16 MiB

Memory configuration 6ch. DDR4-2933 8ch. DDR4-3200
Memory bandwidth
Theoretical 140.8 Gbyte/s 204.8 Gbyte/s
Measured STREAM triad 105.4 Gbyte/s 104.2 Gbyte/s

we switch off automatic NUMA balancing, set the transparent
huge pages option to “always,” and fix the clock frequency
to the respective base value. As the numerical kernels under
investigation can saturate the memory bandwidth with one
thread per core, simultaneous multithreading (SMT) is not
used (although activated in the hardware). CLX is configured
with one ccNUMA domain per socket (Sub-NUMA Clustering
off). Figure 2 shows the STREAM triad bandwidth measured
for CLX with the likwid-bench tool [24].

ROME has a hierarchical design with four cores constituting
a compute core complex (CCX), and two CCXs forming a
compute core die (CCD). CCDs are connected to the memory
via an I/O die. Similar to CLX, the L1 and L2 caches are private,
while the L3 cache is only shared among the four cores in a
CCX. The socket is configured in “NPS1” mode [25], i.e., as
a single ccNUMA domain. In contrast to CLX, this does not
mean that all the cores can use the entire memory interface. The
performance characteristic is similar to having four separate
ccNUMA domains (one per CCD), which is reflected in the
measured STREAM bandwidth (see Fig. 2). For performance
modeling we thus consider the socket to comprise four “quasi-
NUMA” domains. Interestingly, the bandwidth scaling across
quasi-NUMA domains is not ideal (see ideal line in Fig. 2);
we speculate that this might be caused by contention on the
I/O die.

By design, YASK targets only one NUMA node for shared-
memory parallelization. Therefore, we restrict the experiments
to one ccNUMA domain of the architectures, i.e., one socket
with the above configurations.

Software Environment: The Intel compiler 19.0 update 2 is
used on CLX with flags -O3 -xCORE-AVX512 and with -O3
-xCORE-AVX2 on ROME. Unless specified otherwise, YASK
version 3.03.01 is employed and LIKWID 5.0.1 is used for
performance counter measurements and microbenchmarking.
All floating point computations are done with double precision.

IV. YASKSITE

In this work, we propose the YaskSite tool, which combines
Intel’s DSL-based toolkit for stencils, YASK, with an analytical
performance model. YaskSite is capable of running optimized
stencil and streaming kernels.

0 8 16 24 32
0
25
50
75

100
125
150

ε = 66%

Number of cores

B
an

dw
id

th
[G

B
/s

]

ROME
Ideal

0 5 10 15 20

Number of cores

CLX

Fig. 2: Effective STREAM triad bandwidth on one socket of ROME (left)
and CLX (right) versus number of cores (threads). Compact pinning across
physical cores was enforced. The scaling across CCDs on ROME is not perfect
and results in a final efficiency of 66%.

YaskSite

Stencil
Properties

Machine
File

Tuning
Input

Analytical
Spatial Tuning

Analytical
Vector Folding

High Level
Code

Code Generation

YASK JIT

Code Caching Grid Coupling

Data Layout Change
Between Stencils

Fig. 3: Overview of the YaskSite features (green rectangles) and their
interactions (edges). YaskSite inputs are shown as rounded rectangles (yellow)
and external tools called by YaskSite as ellipses (red).

A. YASK

The YASK framework [6] employs a hierarchical tile struc-
ture which offers high flexibility and enables high performance
on a wide variety of heterogeneous architectures. The outermost
tile defines the global problem dimensions {g•}, where •
denotes the direction (e.g., x for x-direction). The global tile is
hierarchically divided into regional (r), block (b) and mini-block
tiles (m). In this work, we focus only on spatial blocking, which
means that regional and mini-block tiles are not considered.
Listing 3 exemplarily shows the basic structure of a spatial
blocking code generated by YASK.

The second main feature of YASK is improved code
vectorization through vector folding techniques, which reduces
the number of required load instructions. YASK supports
folding along any dimension, with L• denoting the fold length
in direction •. Besides tiling and vector folding, YASK offers
automatic separation of boundaries and main grids via the
bounding box concept and automatic dependency analysis
between equations to fuse independent kernels. These allow to
run the main body of the code without conditionals in inner
kernels and to reduce the data traffic.

B. YaskSite

While offering increased flexibility and providing advanced
optimization strategies in a large parameter tuning space, a
major drawback is that YASK uses runtime testing steered by
optimization algorithms (like genetic algorithms or gradient
descent) for scanning the parameter space. This is time- and

177

resource-consuming. YaskSite replaces the runtime tests with
an analytical performance model.

The general features of YaskSite are shown in Fig. 3. The
workflow of YaskSite starts with either a YASK-compatible
stencil file (in C++) or with high-level code (similar to Listing
2). For the latter, YaskSite automatically generates the YASK
stencil file, which is processed by YASK and compiled to a
shared library that can be dynamically linked to YaskSite. The
entire process happens at runtime (just-in-time) whenever a
new stencil is required by the application. To reduce overhead,
YaskSite can optionally cache previous builds of a stencil. The
performance model uses the stencil properties, generated stencil
code and the machine characteristics provided in a YAML
machine file to automatically predict the performance and
determine the optimal stencil parameters based on the tuning
input. The parameters are then set and the code is executed
via YASK kernel API routines. The machine file is an integral
part of the performance prediction and is the only component
that needs to be generated for a new machine/setting. YaskSite
uses the Kerncraft tool4 and some additional benchmarks to
automatically generate this machine file for a given hardware
upon user request.

YaskSite further provides helper functions to change the
data layout and to couple grids between different stencils when
using multiple stencil kernels in one application; e.g., the input
of kernel RHS_App_Up and the output of kernel RHS_LC
should be coupled in implementation F (Listing 1b).

V. PERFORMANCE MODELING IN YASKSITE

The ECM model requires the calculation of several runtime
contributions, which are the numbers of cycles to carry out:

(i) in-core instructions other than loads (Tcomp)
(ii) in-core load/store instructions, i.e., L1 to Register (TL1)

(iii) data transfer between caches and memory, (e.g., between
L2 and L1 given as TL2)5.

Depending on the architecture, the data-related contributions
may or may not overlap, while Tcomp always overlaps with
the others. The ECM model considers this by a machine-
specific overlap hypothesis, which can be determined by
an iterative procedure. It has been shown in [26] that this
approach is compatible with wide variety of modern multi-
core architectures. Similar to its predecessors, CLX has no
overlap in the data transfer times, i.e., they have to be added
up. On ROME, however, full overlap applies, which means that
the component taking the most cycles determines the overall
runtime prediction.

All contributions T∗ are derived from application and
machine information and are defined per lattice site update
(LUP). Tcomp and TL1 are determined by the instructions
produced by the compiler and the in-core port model and
instruction throughput of each of the ports. Tools such as the

4https://github.com/RR ZE-HPC/kerncraft
5In [10], [26], data transfers between caches are denoted by Tij, where i

and j are the two memory hierarchy levels involved. For ease of notation, we
use Tj in this work to denote transfers between cache/memory j (e.g., L2)
and lower cache levels (e.g., L1).

Intel Architecture Code Analyzer (IACA) [27] and the Open-
Source Architecture Code Analyzer (OSACA [28], [29]) can
determine both contributions via a static analysis of the object or
assembly code. The remaining components (e.g., TL2) require
an in-depth analysis of the data transfers of the application
code, which we discuss in the following Sections V-A and V-B
in the context of the YASK code.

By combining the ECM model contributions, the single-core
runtime prediction is given by:

T (1) = max (Tcomp, op1 (TL1, op2 (TL2, op3(TL3, . . .)))
(6)

where each of op1, op2, op3, . . . is either SUM or MAX
operator, depending on the overlap hypothesis. The multi-core
prediction T (ξ) within a NUMA domain is obtained by scaling
down T (1) by the number of cores (ξ) up to the saturation
point ξs.6 At CPU frequency f ,

ξs = T (1)/TMem

T (ξ) = T (1)/max(ξ, ξs) (7a)
P (ξ) = f/T (ξ) (7b)

yields the predicted runtime T (ξ) and performance P (ξ) for
ξ cores on a ccNUMA domain. Beyond a single domain, the
model assumes linear speedup. On ROME, however, scaling
is not perfect across CCDs as shown in Fig. 2. To account for
this, we multiply the performance with the measured stream
efficiency when scaling outside a CCD on ROME.

A. Spatial Tiling

YASK uses spatial tiles (Listing 3) to optimize performance.
Here we discuss how the tile size (b•) affects performance by
changing the data flow through the memory hierarchy.

For any streaming code whose working set fits into memory
hierarchy level j, the minimum data volume Vbase per lattice
site update from and to hierarchy level i is:

Vi = Vbase = 0 if i > j (8a)
Vi = Vbase = (Nr + w ·Nw) · v · d else (8b)

where Nr is the number of grids that are only read, Nw is the
number of grids that are written and d is the size of a single
grid element in bytes (e.g., sizeof(double)). w denotes
the write-allocate factor, which is one for victim caches and
two for all other caches.7 Factor v is the victim cache factor,
which is one except when data fits in a victim cache (j), in
which case v = 2 as all data must be loaded and written back.
Given a data volume Vi to level i, the ECM contribution Ti is:

Ti = f · Vi/Bi (9)

where Bi is the effective bandwidth (in bytes/s) between level
i and its next lower neighbor. The derivation is based on the
assumption that the throughput of data traffic is dominant,

6This uses the assumption that all resources except the shared ones (main
memory) scale linearly.

7It is assumed that write-allocate avoiding techniques like non-temporal
stores and/or cache line zero are not used. If they are, the factor w is one.

178

https://github.com/RRZE-HPC/kerncraft

1 for(int t=1; t<g_t; ++t)
2 #pragma omp parallel for collapse(3) schedule(static,1)
3 for(int begin_b•=0; begin_b•<g•; begin_b• += b•)
4 for(int • = begin_b•; • < begin_b• + b•; • = •+ 1)
5 out[t+1,x,y,z] = STENCIL(in[t, x, y, z])

Listing 3: Basic structure of the spatial blocking code2 considered. The
remainder loop handling is not shown. The collapse clause refers to the
three nested blocking loops in x, y and z direction covered by the loop
counters “begin_b•”.

while latency costs can be neglected. This is valid for the
stencil kernels considered in this work due to the regular access
patterns with long inner loops and hardware prefetchers being
active for all our experiments. The calculation of the effective
bandwidth (Bi) depends on the property of cache/memory
system, i.e., the duplexity and symmetry (between load and
store) of the bandwidth. More details can be found in [26].

The lowest hierarchy level j in which a data set fits entirely
determines the transition point from (8a) to (8b). It is identified
by comparing the total memory footprint of the code with the
effective cache size8 Si of each memory hierarchy level (i).
If Ng = Nr + Nw is the total number of grids (with grid
dimension g•), then j denotes the lowest cache hierarchy (i)
that satisfies Ng · d · gx · gy · gz < Si.

Moving from pure streaming to stencil operations, additional
data traffic contributions have to be taken into account. These
depend on the data reuse within an update sweep of the grid.
For example, data is always reused along the inner dimension
(z), i.e., grid elements (x, y, z − r), (x, y, z − (r − 1)), . . . ,
(x, y, z + (r − 1)) reuse the element (x, y, z + r). Along the
other dimensions, however, data may or may not be reused
from the cache; this depends on the amount of data loaded
into a cache until a grid element in that dimension is touched
again. The layer condition analysis (LCA) introduced in [10],
[11], which assumes a cache with a least recently used (LRU)
replacement policy, can be used to analytically estimate the
extra data volume and the problem size at which reuse of data
in each dimension occurs. For YASK codes (Listing 3), block
dimensions (b•) play a crucial role in this respect; star-shaped
stencils9 with radius r (e.g. Heat3D and Wave3D) have the
following reuse conditions:

reuse in y ⇒ (Ns (4r + 1) + (Ng −Ns)) · bzd < si (10a)
reuse in x⇒ (Ns (2r + 1) + (Ng −Ns)) · bybzd < si

(10b)

They decide whether data can be reused along y and x. Ns is
the number of grids that contain stencil relations. As blocks
are computed separately for each thread, the cache sizes si
differ from the total effective cache size Si. In general, both
are related by si = Si/ξ, where ξ is the number of working
cores.

Reuse in the outermost dimension x implies reuse in all
other dimensions. A cache i satisfying (10b) will only have to
load element (x+ r, y, z) from the next higher level while all

8Note that Si includes the cache size available to all the working cores.
9For a discussion of different stencil shapes, we refer to [30].

TABLE II
DATA TRANSFER VOLUME OF STENCIL/STREAMING CODES. THE VOLUME
Vi FROM CACHE i TO A LOWER LEVEL IS DETERMINED BY THE CACHE SIZE
si AVAILABLE TO EACH CORE WHEN GOING THROUGH THE TABLE FROM THE
TOP AND STOPPING AT THE FIRST CONDITION MET. Vbase CORRESPONDS
TO vd · (Nr + wNw). FOR CASES WITHOUT VECTOR FOLDING (SECTION
V-A), rx = ry = r AND Lx = Ly = 1.

si ≤ Vi in byte/LUP

(Ns(2(rx + ry) + 1) + (Ng −Ns))LxLybzd Vbase + 2Ns(rx + ry)vd
(Ns(2rx + 1) + (Ng −Ns))Lxbybzd Vbase + 2Nsrxvd
Ngdgxgygz/ξ Vbase
∞ 0

other stencil accesses will be cache hits. However, if cache i
only satisfies (10a) but not (10b), there is only reuse in the y
and z directions, and all 2r elements in the x dimension as
well as the newest element in the y dimension (x, y + r, z)
must be loaded from the higher level. If neither condition is
satisfied, there is no reuse in x and y, and 4r elements in the
x and y dimensions along with (x, y, z+r) in the z dimension
will be loaded. The minimal data traffic Vbase in (8) assumes
one load per lattice site update from all stencil grids. This
applies if the next lower cache i satisfies (10b); else, further
contributions corresponding to non-reused elements (see above)
must be added. This is summarized in Table II.

Analytical tuner: Block sizes b• (Listing 3), i.e., by and bz
can be adjusted to satisfy (10a) and (10b) for a given cache.
This will decrease the data volume (Vi) from the next higher
level (i), resulting in a reduced data transfer time Ti. YaskSite
uses this fact for analytical tuning. The YaskSite tuner can
identify block sizes b• from so-called blocking criteria. A
blocking criterion is a user-provided tuning input to YaskSite
as illustrated in Fig. 3. The input specifies which cache needs
to satisfy which condition of (10). For example, if the user
specifies that the L3 cache need to satisfy (10b), the tuner will
consider the cache size of L3 (si) and try to set b• such that
only one element (x+ r, y, z) of the stencil grid needs to be
loaded from main memory.

The tuner further tries to make the total number of block
tiles a multiple of the thread count in order to avoid load
imbalance. In addition, this number has to be small to reduce
the extra traffic from boundaries. To avoid performance loss
due to latency and prefetching effects, the tuner selects a
solution which has the minimum cut (i.e., maximum bz) in the
innermost direction (z).

Figure 4 shows the impact of a violation of (10b) by the L3
cache. The measured performance and memory data volume (in
inset) of the Wave3D stencil are plotted against gz on one socket
(20 cores) of CLX. For comparison, the corresponding ECM
prediction is plotted as dotted lines (predictions for blocked
code are hidden by the r = 1 spatial blocking measurements).
We chose gy = gz , and gx was set to make the working set
10 GiB, which allows to solely portray the layer condition
effects while ignoring cases where all data fits into a cache.
The number of grids with specific properties required for the
prediction can be derived from (5); for this case Nr = 3,
Nw = 1 and Ns = 1. Variant plain sets by = bz = gz and

179

0 200 400 600 800 1,000

1

2

3

4

5

6

0
40
80

120

B
/L

U
P

gy = gz

G
L

U
P/

s
r=1, plain

r=1, spatial
r=4, plain

r=4, spatial
Predicted

Fig. 4: Performance of Wave3D on CLX (full socket) vs. inner grid dimensions,
with and without analytical spatial tuning at r = 1 and r = 4, comparing
measurement (solid line) with ECM prediction (dotted line). Inset: memory
traffic (600 < gz < 700) predicted and as measured with LIKWID.

0 5 10 15 20
0

1

2

r = 1

Number of cores

G
L

U
P/

s

0 5 10 15 20
0

1

2

r = 4

Number of cores

G
L

U
P/

s

plain spatial ECM

Fig. 5: Scaling performance of Wave3D on CLX at gy = gz = 500, with and
without analytical spatial tuning at r = 1 and r = 4. The measurements are
shown with solid line and ECM model prediction with dotted line.

chooses bx to have enough work for τ working threads, i.e.,
bx = gx/τ . For variant spatial, the YaskSite tuner selects b•
such that (10b) is satisfied in L3 and (10a) in L2 cache. The
inset depicts for gz ∈ [600, 700] the memory data volume
measured by LIKWID (solid lines) and the data volume VMem

predicted (dotted lines) using Vi from Table II. Note that the
performance boost by analytical blocking is higher for the
larger radius (r = 4 vs r = 1) as the volume without reuse in
the x-dimension has a radius-dependent term 2r.

The scaling behavior of both the plain and spatial variants
for r = 1 and r = 4 within a socket of CLX is shown in
Fig. 5. The typical saturation pattern of memory-bound codes
can be observed. The ECM model also captures this behavior
by the use of the maximum function in (7a). The deviation
between measurement and model around the saturation point is
due to the decrease in the efficiency of the memory subsystem
as the utilization increases. This can be corrected by adding a
recursive penalty term to the model [31]. Since the aim of this
work is to generate proper performance ranking and tuning
among kernels, we do not follow this approach here.

Figure 6 compares YaskSite’s analytical spatial tuner with
YASK’s inherent spatial tuning on one socket of CLX and
ROME. YASK uses a runtime tuning strategy with an opti-
mization algorithm based on gradient descent. The plots show

r = 1
0

1

2

G
L

U
P/

s

0.
0
0
02

3
6.
0
9

r = 2

0.
0
00
3

37
.6
2

r = 4

0.
0
00
2

43
.5
0

(a) CLX

r = 1
0

1

2

G
L

U
P/

s

0.
0
00
5

3
8.
45

r = 2

0.
0
00
5

40
.7
8

r = 4

0.
0
00
5

46
.0
0

(b) ROME

plain analytical GD

Fig. 6: Performance comparison between YaskSite’s analytical spatial tuning
(blue) and YASK’s gradient descent (GD) tuning (light red) for Wave3D stencils
with different radius. The plain variant (black) with no tuning is shown for
reference. Numbers show the average tuning time in seconds.

the performance statistics of Wave3D for 36 runs with global
problem dimension varying from 300 to 1000 in steps of
20. The starting block sizes (b•) for YASK’s runtime tuning
were set to 32 (default). In all cases, the parameters found
by YaskSite’s analytical tuner achieve a similar or better
performance than YASK’s tuning algorithm. Moreover, due to
its analytical nature, YaskSite’s tuner is very fast (average time
in seconds is written in numbers in Fig. 6) and predicts the
attainable performance without actually running the code. This
is highly beneficial when there are many kernels and variants
to test, as is the case with PIRK methods.

B. Vector Folding

Vector folding [19] was introduced in YASK as a technique
to reduce L1 to register transfers, thereby reducing TL1. In
traditional vectorization, a separate vectorized load would be
used for each stencil entry. For instance, the Wave3D stencil
with r = 4 would need 25 vectorized loads (corresponding to
25 points of the stencil) of SIMD width L to update L target
elements. Many of the neighboring loads in the innermost
dimension are redundant, e.g., at L = 8, (x, y, z) is loaded
five times into five different registers. By applying a 1D vector
folding along the z-direction (Lz = 8), these redundant loads
can be avoided and only three loads (compared to nine) in
the z direction would suffice. To recover all nine registers that
correspond to the nine points in the z-direction, blend/permute
operations are carried out on the loaded vector registers, which
decreases TL1 (load) at the price of potentially increasing the
Tcomp (blend) contributions.

The folding technique can be extended to the outer di-
mensions (x, y) by rearranging the data layout and moving
the folded elements of the outer dimensions (Lx, Ly) to the
innermost dimension. To denote the vector folding in all

180

0 100 200 300 400

1.5

2.0

2.5 Measured

gy = gz

G
L

U
P/

s

0 100 200 300 400

Predicted

gy = gz

0 100 200 300 400

40

60

Measured

gy = gz

B
/L

U
P

0 100 200 300 400

Predicted

gy = gz

(a) Wave3D r = 1

0 100 200 300 400

1.0
1.5
2.0
2.5 Measured

gy = gz

G
L

U
P/

s

0 100 200 300 400

Predicted

gy = gz

0 100 200 300 400

40

80

120

Measured

gy = gz

B
/L

U
P

0 100 200 300 400

Predicted

gy = gz

(b) Wave3D r = 4

1:1:8 1:8:1 2:2:2 4:2:1 8:1:1

Fig. 7: Performance and memory traffic of different folds for Wave3D on CLX. Note that the y-axes do not start from 0.

directions, we use the notation Lx:Ly:Lz . E.g., the 1D folding
considered above is 1:1:8. By combining foldings along the
dimensions, 2D folds (e.g., 1:4:2) or 3D folds (e.g., 2:2:2) can
be constructed. Each of these requires different numbers of
load and blend operations [19].

To consider folding effects in the performance model, data
traffic contributions from all memory hierarchies are required.
These contributions are heavily dependent on the LCA. For
1D vector foldings along the innermost direction, the LCA
remains unchanged compared to Section V-A. However, for
foldings in outer dimensions the LCA has to be modified to
reflect the changes in the data layout.

For such foldings, two opposing effects influence the LCA.
First, bringing Lx × Ly elements of the outer dimensions
to the innermost z-dimension reduces the effective radius
(r) in the folded dimension x and y from r to dr/Lxe and
dr/Lye, respectively.10 For r > 1, this has the positive effect
of decreasing the data volume. Figure 7b depicts this for the
plain variant of Wave3D at r=4 on one socket of CLX. With
growing Lx, if there is no reuse in x-direction by the L3 cache
(see, e.g., gz = 400), the memory data volume decreases and
correspondingly the performance increases. This happens since
the extra data traffic in this case corresponds to 2rx, where rx
is the effective radius in the x dimension. However, for r = 1
(Fig. 7a) there is no difference since d1/L•e is always one for
all folding lengths L•.

A second effect of the data layout change is that more
data is brought into cache while traversing the z-dimension.
Between two consecutive touches of the stencil elements in
x- or y-direction, more data (compared to the naive version)
is loaded. For example with a fold of 8:1:1, eight times more
data is loaded when traversing the z-direction. This implies

10dxe denotes the smallest integer ≥ x.

that the reuse conditions in y- and x-dimension ((10a) and
(10b), respectively) must be modified:

y ⇒LxLy (Ns (2rx + 2ry + 1) + (Ng −Ns)) bzd < si
(11a)

x ⇒Lx (Ns (2rx + 1) + (Ng −Ns)) bybzd < si (11b)

where rx = dr/Lxe and ry = dr/Lye.
Table II shows the transferred data volume (Vi) in byte/LUP.

The derived VMem is plotted for Wave3D in Fig. 7 (two
rightmost columns) together with the measured values. The
dependence of Lx on the reuse in x-dimension (11b) is evident.
E.g., in the case of r = rx = 1, both experiment and prediction
show that as Lx increases the dimension gz = by = bz at which
(11b) is violated shifts towards the left, i.e., smaller values.
It should be noted that the drop in measured performance
around the point of violation of (11b) is not as sharp compared
to the prediction, leading to some deviation between model
and measurement in this region. This is because the model
assumes perfect LRU with full associativity, while in reality
associativity is finite and pseudo-LRU is used. However, from
Fig. 7 it is clear that the predicted qualitative performance
behavior is in tune with the measurement and therefore the
best variant can be chosen without actually generating the code,
which in this case takes about 30 s for each variant. In addition,
the prediction allows to save the autotuning cost as shown in
Fig. 6.

VI. OFFSITE INTEGRATION

To demonstrate YaskSite’s features in an AT context, we
integrate it into Offsite, an offline AT approach for explicit ODE
methods [22]. Offsite can identify efficient implementation
variants from a pool, which the user defined using YAML
description formats. Offsite compares and ranks these variants

181

200 400 600

50

100

150
Plain - Measured

g•

M
L

U
P/

s

200 400 600

Plain - Predicted

g•
200 400 600

Spatial - Measured

g•
200 400 600

Spatial - Predicted

g•

F, 1:1:8 F, 2:2:2 F, 4:2:1 A, 1:1:8 A, 2:2:2 A, 4:2:1

(a) Wave3D (r = 2) on CLX.

200 400 600

50

100

150
Plain - Measured

g•

M
L

U
P/

s

200 400 600

Plain - Predicted

g•
200 400 600

Spatial - Measured

g•
200 400 600

Spatial - Predicted

g•

F, 1:1:4 F, 2:2:1 A, 1:1:4 A, 2:2:1

(b) Wave3D (r = 2) on ROME.

Fig. 8: Comparison of predicted and measured performance for different variants of the PIRK method using Wave3D (r = 2). ‘F’ and ‘A’ denote the PIRK
implementation type; folds are specified with the usual Lx:Ly :Lz notation. ‘Plain’ and ‘Spatial’ refer to variants without and with analytical block size tuning,
respectively.

by their performance using an analytic prediction methodology
based on the ECM model [8]. By integrating YaskSite, Offsite
can use its ECM predictions for blockings and foldings.

Offsite runs start with a user-defined tuning scenario, which
includes (i) the pool of implementation variants, (ii) the target
platform, (iii) the ODE method, and (iv) the ODE problem.
For YaskSite, we further needed to add (v) parameters to
specify blockings and foldings. An exemplary tuning scenario,
considered later in Fig. 8a, is the following: (i) A and F, (ii)
CLX (iii) Radau II A(7), (iv) Wave3D at r = 2 and (v) blocking
in L3 cache for x-direction reuse with 4:2:1 folding.

Offsite derives all available variants from the given scenario
and computes for each its performance prediction

θε =
∑|Λ|

λ
φλ + tcom (12)

as the sum of the predictions φ of its kernels |Λ| plus an
estimate tcom of the barrier costs obtained via benchmarking
(see [8], [32] for details). These predictions θ are used to
determine the variant ranking. Offsite generates specialized
code only for the best-rated variants, which is handled internally
[22]. For this work, we further coupled YaskSite’s code
generation to enable its stencil-specific optimizations.

The prediction φ of a kernel λ is given as φλ = β
P (ξ) ,

where P (ξ) is the ECM prediction for λ (7b) and β is the
loop iteration count. For each kernel, Offsite generates code –
specialized in the input data – in a format processable by the
backend used to obtain P (ξ). Kerncraft is used as backend
in [22]. With YaskSite, we provide an alternative backend
for stencil-like codes, which allows to exploit YaskSite’s
optimizations within Offsite. This extends Offsite’s available

optimization space on blocking and folding support as well
as on specialized optimization of stencil-like ODEs and, thus,
considerably expands the pool of variants to select from.

VII. EXPERIMENTAL EVALUATION

The quality of YaskSite’s performance prediction for PIRK
method implementations and the reliability of the derived
rankings is evaluated in the following. In particular, we study
tuning ODE problems Heat3D and Wave3D (cf. Fig. 1) for
ODE method Radau II A(7). For Wave3D, we include cases
r = 2 and r = 4.

For each ODE problem, 20 and 16 different implementation
variants are considered on CLX and ROME, respectively. These
variants are derived from PIRK implementations A and F by
applying analytical spatial tuning and different vector folds
(1D, 2D, 3D). The total fold size (Lx ·Ly ·Lz) is fixed to equal
the actual hardware SIMD width, i.e., eight for CLX and four
for ROME. We consider five different folds for CLX (cf. Fig.
7) and four folds (1:1:4, 1:4:1, 4:1:1, 2:2:1) for ROME. All
experiments are run on cubic grids, with g• varying from 120–
700 in increments of 20. As the run-time variations between
different measurement runs were less than 5%, we do not show
the error bars in our performance results.

A. Prediction Quality

Figure 8 shows the predicted and measured performance
vs. the problem size of some interesting variants for Wave3D
(case r = 2) without (Plain) and with spatial tuning (Spatial)
applied. Predictions and measurements agree well on both
systems. Most of the deviation was at smaller problem sizes;

182

base
no jumps

integer move
0

100

200

300
M

L
U

P/
s

0

100

200

300
M

L
U

P/
s

(a) plain

base
no jumps

integer move
0

200

400

600

800

M
L

U
P/

s

0

200

400

600

800

(b) with spatial tuning

Measured ECM

Fig. 9: Performance of different code optimization strategies on YASK with
the RHS_LC kernel using the Wave3D (r = 4) stencil on ROME. The total
(cubic) problem size in this case is g• = 500 and the folding is set to 1:1:4.

e.g., the mean deviation on ROME was 12.7% for g• ≤ 260
and 9.0% for g• > 260. This higher deviation at smaller sizes
is due to the extra data volume and overhead caused at the
boundaries, which are currently not considered in the model.

Overall, for almost all cases the mean deviation was well
under 20%, except for Wave3D (r = 4) on ROME. For Wave3D
(r = 4) on ROME the mean deviation was up to 40% indicating
that the generated code does not behave as predicted and might
be sub-optimal. A detailed investigation of the assembly code
revealed two problems, which affected kernels like RHS_LC
(see the high deviation of the base variant in Fig. 9). Firstly, the
assembly code contained conditional branches inside the main
inner loop due to a generic masked store being used, although
a non-masked store would be sufficient. Secondly, the main
loop contained unnecessary integer move operations due to
generic unaligned vectors being created despite vectors being
aligned in many cases. By employing specialized versions of
the instructions, we were able to fix both problems and could
increase the performance of kernel RHS_LC compared to the
base version (Fig. 9) for tuning cases “plain” and “spatial.” On
machines that support the AVX-512 instruction set (like CLX),
the aforementioned problems did not have much impact on the
performance since specialized mask and permute instructions
are available. In contrast, for AVX/AVX-2 (like on ROME)
YASK emulates these instructions, causing extra overhead.

Both issues were fixed in the latest YASK version 3.04.03,
which was used in the experiments shown in Fig. 8. Despite all
optimizations, the prediction of the tuned version of Wave3D
(r = 4) was still off by about 20%. Further investigation
indicated that this is due to boundary overhead and cache
associativity, which can have a considerable impact on complex
kernels such as RHS_LC.11 To support investigations like
these, YaskSite has a validation feature that measures the
data traffic contributions across the memory hierarchy levels
using the LIKWID performance counter tool and compares
them with corresponding predictions. For RHS_LC with r = 4,
we observed that the measured L3 traffic was more than two

11The RHS_LC kernel includes four 25-point stencils (Wave3D, r = 4)
and other streaming arrays making it a complex, bulky stencil.

TABLE III
MEAN DEVIATION AND PERFORMANCE LOSS INCURRED BY CHOOSING
YASKSITE’S PERFORMANCE MODEL FOR RANKING.

Arch IVP Deviation Performance loss (%)
Mean Maximum Mean

CLX
Heat3D 6.4 9.8 1.0
Wave3D, r = 2 9.4 9.8 1.2
Wave3D, r = 4 17.2 5.8 1.0

ROME
Heat3D 9.9 21.1 3.6
Wave3D, r = 2 10.0 21.1 4.4
Wave3D, r = 4 16.3 17.4 2.2

times higher than the analytically predicted traffic, while for
other ODE problems the traffic deviation was less than 15%.
These overheads and effects are not currently included in the
ECM model but can be included. For instance, in the case of
boundary overhead, extra data traffic proportional to the surface
area of each block and the width of the halo (generally equal
to radius r) can be added. Similar analyses and extensions to
the model are part of our future work.

Table III summarizes for all three problems the mean
performance deviation on CLX and ROME across all problem
sizes and variants. Note that YASK version 3.04.03 was used
in these experiments.

B. Ranking Quality

An important metric for assessing the quality of an AT is the
reliability and accuracy of its returned ranking, which can be
quantified using the performance loss metric [8]. It describes
the loss in performance caused by executing a variant suggested
by AT instead of the actually measured best variant. Ideally,
both variants are the same. The performance loss is quantified
as the percentage of performance deviation

(best−select
select × 100

)
between the actual measured best variant (best) and the variant
selected by AT (select). The lower the loss the better is the
quality of AT.

Table III shows the maximum and mean performance loss
of different problem sizes when using YaskSite’s analytical
model for ranking the variants. As primary criteria, variants
are ranked by their performance prediction θ (see Sect. VI) in
ascending order. In case of a tie, the variant with the lower
saturation point ξs is ranked higher. This way the variant that
is expected to saturate the memory interface first (i.e., with
a lower number of cores) is selected. Table III shows that
YaskSite performs very well and has a mean performance loss
of well under 5% in all cases. The maximum performance
loss occurred for very small problem sizes (g• < 260), while
losses were marginal for the remaining cases. This ensures that
the simple12 analytical model considered here is sufficient to
attain a proper ranking for all ODE problems and architectures
considered.

12“Simple” refers to the simplifying assumptions like perfect LRU, full
cache associativity, boundary effects being negligible, and linear scaling to
saturation.

183

VIII. CONCLUSION

In this paper we have introduced YaskSite, which combines
the YASK stencil code generation and autotuning toolkit with
the analytical ECM performance model to automatically predict
and tune the performance of stencil codes. To this end, we
presented for the first time an ECM model for an AMD
Rome CPU and further extended the model’s layer condition
analysis to include vector folding and victim caches. We
showed that insights from the model can be used to analytically
tune the code without actually running it and compare our
results with YASK’s built-in tuner. The model’s usefulness to
detect bottlenecks and guide performance optimizations was
demonstrated via a case study on Rome, in which the sub-
optimal generated YASK code could be fixed and performance
improved by a factor of 2.5. Finally, we have shown that
YaskSite can be integrated with external tools like Offsite to
autotune more complex applications. In particular, prediction
and ranking quality of different PIRK method implementation
variants were analyzed for two stencil-based ODE problems and
it was shown that YaskSite’s predictions can reliably identify
the best variants, thereby saving both code generation and
autotuning costs.

IX. OUTLOOK AND FUTURE WORK

The introduced YaskSite framework allows easy expansion
and testing of the built-in performance model and tuning
procedures. Future work will include taking into account the
overheads at boundaries, an extension to other stencil shapes
(like box stencils) and adding support for temporal blocking
of stencils. Another future direction of this work is to include
architectures other than x86 by expanding support to other
generic backends like DEVITO [33] in addition to YASK.

The presented idea to couple YASK code with an analytical
performance model and tuning is not limited to stencil codes
and can be generalized to other areas where analytical perfor-
mance models like the ECM or Roofline model apply. These
models have been widely used to model applications involving
steady-state loops like sparse matrix operations with indirect
accesses [34], Lattice Boltzmann Method (LBM) kernels with a
large number of input arrays [35], and neuron simulations in the
Blue Brain Project [36]. However, the tuning and optimization
strategies will vary depending on the application field, and
therefore the analytical tuner will have to be adapted to reflect
the underlying optimizations and performance models.

ACKNOWLEDGMENT

This work is supported by the German Ministry of Science
and Education (BMBF) under project numbers 01IH16012A,
01IH16012C.

ARTIFACT APPENDIX

A. Abstract

This artifact provides the source code of the YaskSite
framework introduced in this work. Our YaskSite framework
builds on Intel’s YASK framework and the analytical ECM

performance model. The artifact includes a Singularity con-
tainer which takes care of installing all dependencies required
to build YaskSite and to run the experiments discussed in our
paper.

B. Artifact Checklist

• Program: Running the artifact requires LIKWID (version
5.1.0) and Offsite (version 0.2.0). Both are open-source1314

and already included in the Singularity container.
• Compilation: The Intel C compiler is required. We

conducted our experiments with compiler version 19.0
update 2, but other newer versions should work too.

• Transformations: YaskSite employs YASK version
3.04.01 to carry out required code transformations. YASK
is open-source15 and included in the Singularity container.

• Run-time Environment: The only supported environment
is x86-64 Linux. YaskSite’s dependencies include Intel
YASK, Intel IACA, LIKWID, symee and yaml-cpp. Off-
site requires Python 3.6 or higher. All dependencies are
automatically resolved by the Singularity container.

• Hardware: The experiments were conducted on an Intel
Cascade Lake and an AMD Rome architecture (see
Table I).

• Execution: For minimal variance and best results [23], we
switch off automatic NUMA balancing, set the transparent
huge pages option to “always,” and fix the clock frequency
to the respective base value (see Table I). Simultaneous
multithreading is not used although activated in the
hardware.

• Metrics: The measured and predicted performance of a
kernel is reported in lattice updates per second [LUP/s].

• Output: Yasksite writes its output to console or file.
Offsite stores its outputs in a SQLite database.

• Experiments: Build the Singularity container and follow
the instructions given in the artifact repository. For
easiness, experiments in the paper can be reproduced
using corresponding Singularity apps. Runtime variations
between different measurement runs were less than five
percent.

• How much disk space required (approximately): The
Singularity container is approximately 2.6 GB in size. For
YaskSite measurement runs approximately 60 GB main
memory space are required. When tuning the PIRK appli-
cation with Offsite (see Fig. 8) we require approximately
120 GB of main memory space. Moreover, 10 GB disk
space is needed to cache all YASK generated kernels.

• How much time is needed to prepare workflow?:
Installing app build in the Singularity container can take
about 10 to 15 minutes.

13LIKWID is available from the following URL: https://github.com/RRZE-
HPC/likwid/releases/tag/v5.0.1.

14Offsite is available from the following URL: https://doi.org/10.5281/
zenodo.4283107.

15YASK is available from the following URL: https://github.com/intel/yask/
tree/045b582.

184

https://github.com/RRZE-HPC/likwid/releases/tag/v5.0.1
https://github.com/RRZE-HPC/likwid/releases/tag/v5.0.1
https://doi.org/10.5281/zenodo.4283107
https://doi.org/10.5281/zenodo.4283107
https://github.com/intel/yask/tree/045b582
https://github.com/intel/yask/tree/045b582

• How much time is needed to complete experiments
(approximately)?: For YaskSite runs (see Fig. 4–7), it
takes about half an hour. For tuning runs with Offsite (see
Fig. 8) it can take up to half a day.

• Publicly available: Yes.
• Code License: GNU Affero General Public License v3.0
• Archived: https://doi.org/10.5281/zenodo.4415588.

C. Description

1) Distribution: The artifact is publicly available16. It
contains a Singularity container which handles the installation
of all required tools and dependencies. Further, Singularity
apps are provided to run the experiments shown in the paper.
All required software components are automatically installed
when executing the Singularity container. As their source codes
are open-source, they are also separately retrievable14,17.

2) Hardware Dependencies: YaskSite will work on most
Intel architectures from the Sandy Bridge generation to modern
Cascade Lake processors along with AMD Zen and Zen 2
architectures. To get comparable results with those provided
in the paper, the Intel Cascade Lake (CLX) respectively AMD
Rome (ROME) architecture are required. In particular, we used
the two systems described in Table I.

The machine configurations used during our experiments
are deposited in the artifact’s folder mc_state. We recommend
using these setting or similar settings. In particular, the CLX is
configured with one ccNUMA domain per socket (Sub-NUMA
Clustering off) and ROME with NPS1 mode.

3) Software Dependencies: All software dependencies have
been resolved in the Singularity container.

D. Installation

Before installation, clone/download the artifact repository16.
There you can find a README which explains the following
steps in more detail. First, you need to download and install the
Singularity engine using script install_singularity.sh provided
in the artifact repository. Next, you can download the pre-
build Singularity container18. Once the Singularity container
is downloaded, the next step is to run app build in order to
install YaskSite and Offsite:

singularity run --app build YS_CGO.sif

Executing this step at runtime is necessary, since YaskSite does
machine specific configuration at build time.

E. Experiment Workflow

The artifact provides Singularity apps to reproduce the
experimental results presented in the paper. The available apps
can be listed using:

singularity run-help YS_CGO.sif

16The artifact can be downloaded from the following URL: https://doi.org/
10.5281/zenodo.4415588.

17YaskSite is available from the following URL: https://doi.org/10.5281/
zenodo.4283028.

18The pre-build Singularity container is available from the following URL:
https://doi.org/10.5281/zenodo.4415558

To reproduce for example the results in Fig. 4, Singularity app
Fig4 should be used. The following command will provide
more information on the Fig4 app, in particular its inputs and
outputs.

singularity run-help --app Fig4 YS_CGO.sif

Please refer to the README for more details.

F. Evaluation & Expected Results

After installation the provided Singularity apps correspond-
ing to different experiments (figures) have to be run. The
apps output CSV files containing specific prediction and/or
measurement results depending on the experiment. Similar
results as in the paper are expected if the experiments are
conducted on the systems mentioned in Section IX-C2 with
corresponding settings. Runtime variations between different
measurement runs were less than five percent.

G. Experiment Customization

In addition to the Singularity apps for reproducing the
experiment results, own experiments can be run using the
generic YaskSite and Offsite apps provided in the Singularity
container.

REFERENCES

[1] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth,
B. Norris, and R. Vuduc, “Autotuning in High-Performance Computing
Applications,” Proc. of the IEEE, vol. 106, no. 11, pp. 2068–2083, Nov.
2018. https://doi.org/10.1109/JPROC.2018.2841200

[2] A. Tiwari and J. K. Hollingsworth, “Online Adaptive Code
Generation and Tuning,” in Proc. 2011 IEEE Int. Parallel Distributed
Processing Symp., ser. IPDPS ’11. IEEE, May 2011, pp. 879–892.
https://doi.org/10.1109/IPDPS.2011.86

[3] A. Rasch and S. Gorlatch, “ATF: A Generic Directive-Based Auto-Tuning
Framework,” Concurrency and Computation: Practice and Experience,
vol. 31, no. 5, p. e4423, Mar. 2019. https://doi.org/10.1002/cpe.4423

[4] R. C. Whaley, A. Petitet, and J. Dongarra, “Automated Empirical
Optimizations of Software and the ATLAS Project,” Parallel Computing,
vol. 27, no. 1, pp. 3–35, Jan. 2001. https://doi.org/10.1016/S0167-
8191(00)00087-9

[5] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Optimizing
Matrix Multiply Using PHiPAC: A Portable, High-performance, ANSI
C Coding Methodology,” in Proc. 11th Int. Conf. on Supercomputing,
ser. ICS ’97. New York, NY, USA: ACM, Jul. 1997, pp. 340–347.
https://doi.org/10.1145/263580.263662

[6] C. Yount, J. Tobin, A. Breuer, and A. Duran, “YASK – Yet Another
Stencil Kernel: A Framework for HPC Stencil Code-Generation
and Tuning,” in 2016 6th Int. Workshop on Domain-Specific
Languages and High-Level Frameworks for High Performance
Computing, ser. WOLFHPC. IEEE, Nov. 2016, pp. 30–39. https:
//doi.org/10.1109/WOLFHPC.2016.08

[7] P. Pfaffe, T. Grosser, and M. Tillmann, “Efficient Hierarchical Online-
Autotuning: A Case Study on Polyhedral Accelerator Mapping,” in Proc.
ACM Int. Conf. Supercomputing, ser. ICS ’19. New York, NY, USA:
ACM, 2019, pp. 354–366. https://doi.org/10.1145/3330345.3330377

[8] J. Seiferth, C. Alappat, M. Korch, and T. Rauber, “Applicability of the
ECM Performance Model to Explicit ODE Methods on Current Multi-
core Processors,” in High Performance Computing: Proc. 33rd Int. Conf.,
ISC High Performance 2018, ser. ISC ’18. Berlin, Heidelberg: Springer,
Jun. 2018, pp. 163–183. https://doi.org/10.1007/978-3-319-92040-5_9

[9] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
Insightful Visual Performance Model for Multicore Architectures,”
Communications of the ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.
https://doi.org/10.1145/1498765.1498785

185

https://doi.org/10.5281/zenodo.4415588
https://doi.org/10.5281/zenodo.4415588
https://doi.org/10.5281/zenodo.4415588
https://doi.org/10.5281/zenodo.4283028
https://doi.org/10.5281/zenodo.4283028
https://doi.org/10.5281/zenodo.4415558
https://doi.org/10.1109/JPROC.2018.2841200
https://doi.org/10.1109/IPDPS.2011.86
https://doi.org/10.1002/cpe.4423
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1145/263580.263662
https://doi.org/10.1109/WOLFHPC.2016.08
https://doi.org/10.1109/WOLFHPC.2016.08
https://doi.org/10.1145/3330345.3330377
https://doi.org/10.1007/978-3-319-92040-5_9
https://doi.org/10.1145/1498765.1498785

[10] H. Stengel, J. Treibig, G. Hager, and G. Wellein, “Quantifying
Performance Bottlenecks of Stencil Computations Using the Execution-
Cache-Memory Model,” in Proc. 29th ACM Int. Conf. on Supercomputing,
ser. ICS ’15. New York, NY, USA: ACM, 2015, pp. 207–216.
https://doi.org/10.1145/2751205.2751240

[11] J. Hammer, J. Eitzinger, G. Hager, and G. Wellein, “Kerncraft: A Tool
for Analytic Performance Modeling of Loop Kernels,” in Tools for High
Performance Computing 2016. Cham: Springer, Oct. 2017, pp. 1–22.
https://doi.org/10.1007/978-3-319-56702-0_1

[12] G. Rivera and Chau-Wen Tseng, “Tiling Optimizations for 3D
Scientific Computations,” in SC ’00: Proc. 2000 ACM/IEEE Conf. on
Supercomputing, Nov 2000, pp. 32–32. https://doi.org/10.1109/SC.2000.
10015

[13] M. Frigo and V. Strumpen, “The Memory Behavior of Cache Oblivious
Stencil Computations,” The Journal of Supercomputing, vol. 39, no. 2,
pp. 93–112, Feb. 2007. https://doi.org/10.1007/s11227-007-0111-y

[14] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
Practical Automatic Polyhedral Parallelizer and Locality Optimizer,”
ACM SIGPLAN Notices, vol. 43, no. 6, pp. 101–113, Jun. 2008.
https://doi.org/10.1145/1379022.1375595

[15] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske, “Efficient
Temporal Blocking for Stencil Computations by Multicore-Aware
Wavefront Parallelization,” in 2009 33rd Annual IEEE Int. Computer
Software and Applications Conf., vol. 1, July 2009, pp. 579–586.
https://doi.org/10.1109/COMPSAC.2009.82

[16] M. Christen, O. Schenk, and H. Burkhart, “PATUS: A Code
Generation and Autotuning Framework for Parallel Iterative Stencil
Computations on Modern Microarchitectures,” in 2011 IEEE Int.
Parallel Distributed Processing Symp., May 2011, pp. 676–687.
https://doi.org/10.1109/IPDPS.2011.70

[17] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and D. Keyes,
“Multicore-Optimized Wavefront Diamond Blocking for Optimizing
Stencil Updates,” SIAM Journal on Scientific Computing, vol. 37, no. 4,
pp. C439–C464, 2015. https://doi.org/10.1137/140991133

[18] L. Peng, R. Seymour, K. ichi Nomura, R. K. Kalia, A. Nakano,
P. Vashishta, A. Loddoch, M. Netzband, W. R. Volz, and C. C. Wong,
“High-order Stencil Computations on Multicore Clusters,” in 2009 IEEE
Int. Symp. on Parallel Distributed Processing, May 2009, pp. 1–11.
https://doi.org/10.1109/IPDPS.2009.5161011

[19] C. Yount, “Vector Folding: Improving Stencil Performance via
Multi-dimensional SIMD-vector Representation,” in 2015 IEEE 17th
Int. Conf. on High Performance Computing and Communications, 2015
IEEE 7th Int. Symp. on Cyberspace Safety and Security, and 2015 IEEE
12th Int. Conf. on Embedded Software and Systems. IEEE, Aug 2015,
pp. 865–870. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.27

[20] T. Malas, G. Hager, H. Ltaief, and D. Keyes, “Multidimensional
Intratile Parallelization for Memory-Starved Stencil Computations,”
ACM Transactions on Parallel Computing, vol. 4, no. 3, Dec. 2017.
https://doi.org/10.1145/3155290

[21] P. van der Houwen and B. Sommeijer, “Parallel Iteration of High-order
Runge-Kutta Methods with Stepsize Control,” Journal of Computational
and Applied Mathematics, vol. 29, no. 1, pp. 111–127, Jan. 1990.
https://doi.org/10.1016/0377-0427(90)90200-J

[22] J. Seiferth, M. Korch, and T. Rauber, “Offsite Autotuning Approach,”
in High Performance Computing: Proc. 35rd Int. Conf., ISC High
Performance 2020, ser. ISC ’20. Cham: Springer, Jun. 2020, pp.
370–390. https://doi.org/10.1007/978-3-030-50743-5_19

[23] C. L. Alappat, G. Hager, H. Fehske, A. R. Bishop, and G. Wellein,
“Understanding HPC Benchmark Performance on Intel Broadwell and
Cascade Lake Processors,” in High Performance Computing: Proc. 35rd
Int. Conf., ISC High Performance 2020, ser. ISC ’20. Cham: Springer,
Jun. 2020, pp. 412–433. https://doi.org/10.1007/978-3-030-50743-5_21

[24] J. Treibig, G. Hager, and G. Wellein, “likwid-bench: An Extensible
Microbenchmarking Platform for x86 Multicore Compute Nodes,” in
Tools for High Performance Computing 2011. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 27–36. https://doi.org/10.1007/978-
3-642-31476-6_3

[25] Advanced Micro Devices, “Socket SP3 Platform NUMA Topology
for AMD Family 17h Models 30h–3Fh,” Retrieved April 21, 2020
from https://developer.amd.com/wp-content/resources/56338_1.00_pub.
pdf, Oct 2019.

[26] J. Hofmann, C. Alappat, G. Hager, D. Fey, and G. Wellein, “Bridging
the Architecture Gap: Abstracting Performance-Relevant Properties of
Modern Server Processors,” Supercomputing Frontiers and Innovations,
vol. 7, no. 2, pp. 54–78, 2020. https://doi.org/10.14529/jsfi200204

[27] I. Hirsh and G. S., “Intel Architecture Code Analysis,” Retrieved April
21, 2020 from https://software.intel.com/en-us/articles/intel-architecture-
code-analyzer, Apr 2020.

[28] J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and G. Wellein,
“Automated Instruction Stream Throughput Prediction for Intel
and AMD Microarchitectures,” in 2018 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance
Computer Systems, ser. PMBS ’18. IEEE, Nov. 2018, pp. 121–131.
https://doi.org/10.1109/PMBS.2018.8641578

[29] J. Laukemann, J. Hammer, G. Hager, and G. Wellein, “Automatic
Throughput and Critical Path Analysis of x86 and ARM Assembly
Kernels,” in 2019 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems, ser. PMBS ’19.
IEEE, Nov. 2019, pp. 1–6. https://doi.org/10.1109/PMBS49563.2019.
00006

[30] J. Hornich, J. Hammer, G. Hager, T. Gruber, and G. Wellein, “Collecting
and Presenting Reproducible Intranode Stencil Performance: INSPECT,”
Supercomputing Frontiers and Innovations, vol. 6, no. 3, pp. 4–25, 2019.
https://doi.org/10.14529/jsfi190301

[31] J. Hofmann, G. Hager, and D. Fey, “On the Accuracy and Usefulness
of Analytic Energy Models for Contemporary Multicore Processors,”
in High Performance Computing: Proc. 33rd Int. Conf., ISC High
Performance 2018, ser. ISC ’18. Berlin, Heidelberg: Springer, Jun.
2018, pp. 22–43. https://doi.org/10.1007/978-3-319-92040-5_2

[32] M. Scherg, J. Seiferth, M. Korch, and T. Rauber, “Performance
Prediction of Explicit ODE Methods on Multi-Core Cluster Systems,”
in Proc. 2019 ACM/SPEC Int. Conf. on Performance Engineering,
ser. ICPE ’19. New York, NY, USA: ACM, 2019, pp. 139–150.
https://doi.org/10.1145/3297663.3310306

[33] F. Luporini, M. Louboutin, M. Lange, N. Kukreja, P. Witte,
J. Hückelheim, C. Yount, P. H. J. Kelly, F. J. Herrmann, and G. J.
Gorman, “Architecture and Performance of Devito, a System for
Automated Stencil Computation,” ACM Transactions on Mathematical
Software, vol. 46, no. 1, Apr. 2020. https://doi.org/10.1145/3374916

[34] C. Alappat, A. Basermann, A. R. Bishop, H. Fehske, G. Hager,
O. Schenk, J. Thies, and G. Wellein, “A Recursive Algebraic Coloring
Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector
Multiplication,” ACM Transactions on Parallel Computing, vol. 7, no. 3,
Jun. 2020. https://doi.org/10.1145/3399732

[35] M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein,
“Chip-Level and Multi-Node Analysis of Energy-Optimized Lattice
Boltzmann CFD Simulations,” Concurrency and Computation: Practice
and Experience, vol. 28, no. 7, pp. 2295––2315, May 2016.
https://doi.org/10.1002/cpe.3489

[36] F. Cremonesi, G. Hager, G. Wellein, and F. Schürmann, “Analytic
performance modeling and analysis of detailed neuron simulations,” The
International Journal of High Performance Computing Applications,
2020. https://doi.org/10.1177/1094342020912528

186

https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1007/978-3-319-56702-0_1
https://doi.org/10.1109/SC.2000.10015
https://doi.org/10.1109/SC.2000.10015
https://doi.org/10.1007/s11227-007-0111-y
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1109/COMPSAC.2009.82
https://doi.org/10.1109/IPDPS.2011.70
https://doi.org/10.1137/140991133
https://doi.org/10.1109/IPDPS.2009.5161011
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.27
https://doi.org/10.1145/3155290
https://doi.org/10.1016/0377-0427(90)90200-J
https://doi.org/10.1007/978-3-030-50743-5_19
https://doi.org/10.1007/978-3-030-50743-5_21
https://doi.org/10.1007/978-3-642-31476-6_3
https://doi.org/10.1007/978-3-642-31476-6_3
https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf
https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf
https://doi.org/10.14529/jsfi200204
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://doi.org/10.1109/PMBS.2018.8641578
https://doi.org/10.1109/PMBS49563.2019.00006
https://doi.org/10.1109/PMBS49563.2019.00006
https://doi.org/10.14529/jsfi190301
https://doi.org/10.1007/978-3-319-92040-5_2
https://doi.org/10.1145/3297663.3310306
https://doi.org/10.1145/3374916
https://doi.org/10.1145/3399732
https://doi.org/10.1002/cpe.3489
https://doi.org/10.1177/1094342020912528

	Introduction
	Related Work
	Main Contributions
	Outline

	Case Study: PIRK Methods
	Mathematical Background
	ODE Problems
	PIRK Solvers

	Testbed
	YaskSite
	YASK
	YaskSite

	Performance Modeling in YaskSite
	Spatial Tiling
	Vector Folding

	Offsite Integration
	Experimental Evaluation
	Prediction Quality
	Ranking Quality

	Conclusion
	Outlook and Future Work
	Abstract
	Artifact Checklist
	Description
	Distribution
	Hardware Dependencies
	Software Dependencies

	Installation
	Experiment Workflow
	Evaluation & Expected Results
	Experiment Customization

	References

