
Part I:
Introduction to compute node architecture

General Concept

Single Core: Pipelining, Superscalarity, SMT, SIMD

Memory hierarchy and Data Transfers

GPU vs. CPU

2Node-Level Performance Engineering

Multi-core today: Intel Xeon Skylake SP (2017)

 Xeon “Skylake SP” (Platinum/Gold/Silver/Bronze):
Up to 28 cores running at 2+ GHz (+ “Turbo Mode”: 3.8+ GHz)
 Reincarnated as “Cascade Lake” in 2018

 Simultaneous Multithreading (SMT)
 reports as 56-way chip

 8 Billion Transistors / 14 nm
 Die size: ~500 mm2

2-socket server

.

Optional: “Sub-
NUMA Clustering”
(SNC) mode 2015: Broadwell architecture

 Cluster on Die
(analogous to SNC)

 Up to 24 cores

W
ik

iC
hi

p

Node-Level Performance Engineering 3

General-purpose cache based microprocessor core

1. Implements “Stored
Program Computer”
concept (Turing 1936)

2. Similar designs on all
modern systems

3. (Still) multiple potential
bottlenecks

The clock cycle is the
“heartbeat” of the core

Stored-program computer

Modern CPU core

Part I:
Introduction to compute node architecture

Single core: Pipelining, Superscalarity, SMT, SIMD

 Idea:
 Split complex instruction into several simple / fast steps (stages)
 Each step takes the same time, e.g., one cycle
 Execute different steps on different instructions at the same time (in

parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.:
 floating point multiplication takes 5 cycles, but
 processor can work on 5 different multiplications simultaneously
 one result at each cycle after the pipeline is full

 Drawback:
 Pipeline must be filled – sufficient # of independent instructions required
 Requires complex instruction scheduling by compiler/hardware

 software-pipelining / out-of-order execution

 Pipelining is widely used in modern computer architectures
5Node-Level Performance Engineering

Pipelining of arithmetic/functional units

Node-Level Performance Engineering 6

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages
First result is available after 5 cycles (=latency of pipeline)!

 Multiple units enable use of Instruction Level Parallelism (ILP):
Instruction stream is “parallelized” on the fly

 Instructions from different loop iterations retired at the same time

 Issuing m concurrent instructions per cycle: m-way superscalar
 Modern processors are 4- to 6-way superscalar &

can perform 2 floating-point instructions per cycle

Node-Level Performance Engineering 7

Superscalar Processors – Instruction Level Parallelism

Fetch Instruction 4
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 3
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 2
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 1
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 5
from L1I

Decode
Instruction 5

Decode
Instruction 9

Execute
Instruction 5

Fetch Instruction 9
from L1I

Fetch Instruction 13
from L1I

4-way
“superscalar”

t LOAD
STORE

MULT

ADD

Example:

SMT principle (2-way example):

8Node-Level Performance Engineering

Core details: Simultaneous multi-threading (SMT) a.k.a. hyper-threading
“logical” cores multiple threads/processes run concurrently

St
an

da
rd

 c
or

e
2-

w
ay

 S
M

T

 Single Instruction Multiple Data (SIMD) operations allow the concurrent
execution of the same operation on “wide” registers

 x86 SIMD instruction sets:
 SSE: register width = 128 Bit 2 double precision floating point operands
 AVX(/2): register width = 256 Bit 4 double precision floating point operands
 AXV512: you get it.

 Adding two registers holding double precision floating point operands

9Node-Level Performance Engineering

Core details: SIMD processing

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A[
0]

B[
0]

C
[0

]

64
Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:
R2 ADD [R0,R1]

SIMD execution:
V64ADD [R0,R1]
R2

There is no single driving force for single core performance!

Maximum floating point (FP) performance:

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 � 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹 � 𝑛𝑛𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆 � 𝑓𝑓

Node-Level Performance Engineering 10

Super-
scalarity

FMA
factor

SIMD
factor

Clock
Speed

Typical
representatives

𝒏𝒏𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑭𝑭𝑭𝑭

[inst./cy]
𝒏𝒏𝑭𝑭𝑭𝑭𝑭𝑭

𝒏𝒏𝑺𝑺𝑺𝑺𝑭𝑭𝑺𝑺
[ops/inst.] Code 𝒇𝒇

[Gcy/s]
𝑭𝑭𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔

[GF/s]

Nehalem 2 1 2 Q1/2009 X5570 2.93 11.7
Sandy Bridge 2 1 4 Q1/2012 E5-2680 2.7 21.6

Haswell 2 2 4 Q3/2014 E5-2695 v3 2.3 36.8
Broadwell 2 2 4 Q1/2016 E5-2699 v4 2.2 35.2

Skylake 2 2 8 Q3/2017 Gold 6148 2.4 76.8
AMD Zen 2 2 2 Q1/2017 Epyc 7451 2.3 18.4

AMD Zen2 2 2 4 Q3/2019 Epyc 7742 2.25 36.0
Fujitsu A64FX 2 2 8 Q2/2020 FX700 1.8 57.6
IBM POWER8 2 2 2 Q2/2014 S822LC 2.93 23.4

s = 0.0
do i = 1,N

s = s + a(i)
enddo

 Loop-carried dependency on summation variable
 Execution stalls at every ADD until previous ADD is complete

No pipelining?
No SIMD?

Node-Level Performance Engineering

A “simple” example: The sum reduction

…In single precision (32 Bit) on an AVX-
capable core (ADD latency = 3 cy)

How fast can this loop possibly run with data in
the L1 cache?

11

Plain scalar code, no SIMD

LOAD r1.0 0
i 1
loop:

LOAD r2.0 a(i)
ADD r1.0 r1.0 + r2.0
++i ? loop

result r1.0
Node-Level Performance Engineering

Applicable peak for the sum reduction (I)

ADD pipes utilization:

 1/24 of ADD peak

s

SI
M

D
 la

ne
s

do i = 1,N
s = s + a(i)

enddo

12

Node-Level Performance Engineering

Applicable peak for the sum reduction (II)

Scalar code, 3-way “modulo variable expansion”

LOAD r1.0 0
LOAD r2.0 0
LOAD r3.0 0
i 1

loop:
LOAD r4.0 a(i)
LOAD r5.0 a(i+1)
LOAD r6.0 a(i+2)

ADD r1.0 r1.0 + r4.0 # scalar ADD
ADD r2.0 r2.0 + r5.0 # scalar ADD
ADD r3.0 r3.0 + r6.0 # scalar ADD

i+=3 ? loop
result r1.0+r2.0+r3.0 1/8 of ADD peak

s1 s2 s3

do i = 1,N,3
s1 = s1 + a(i+0)
s2 = s2 + a(i+1)
s3 = s3 + a(i+2)

enddo
s = s + s1+s2+s3

13

Node-Level Performance Engineering

Applicable peak for the sum reduction (III)

SIMD-vectorization (8-way MVE) x
pipelining (3-way MVE)

LOAD [r1.0,…,r1.7] [0,…,0]
LOAD [r2.0,…,r2.7] [0,…,0]
LOAD [r3.0,…,r3.7] [0,…,0]
i 1

loop:
LOAD [r4.0,…,r4.7] [a(i),…,a(i+7)] # SIMD LOAD
LOAD [r5.0,…,r5.7] [a(i+8),…,a(i+15)] # SIMD
LOAD [r6.0,…,r6.7] [a(i+16),…,a(i+23)] # SIMD

ADD r1 r1 + r4 # SIMD ADD
ADD r2 r2 + r5 # SIMD ADD
ADD r3 r3 + r6 # SIMD ADD

i+=24 ? loop
result r1.0+r1.1+...+r3.6+r3.7

AD

D
 p

ea
k

s11 s21 s31

s12 s22 s32

s13 s23 s33

s14 s24 s34

s15 s25 s35

s16 s26 s36

s17 s27 s37

s10 s20 s30

do i = 1,N,24
s10=s10+a(i+0); s20=s20+a(i+8) ; s30=s30+a(i+16)
s11=s11+a(i+1); s21=s21+a(i+9) ; s31=s31+a(i+17)
s12=s12+a(i+2); s22=s22+a(i+10); s32=s32+a(i+18)
s13=s13+a(i+3); s23=s23+a(i+11); s33=s33+a(i+19)
s14=s14+a(i+4); s24=s24+a(i+12); s34=s34+a(i+20)
s15=s15+a(i+5); s25=s25+a(i+13); s35=s35+a(i+21)
s16=s16+a(i+6); s26=s26+a(i+14); s36=s36+a(i+22)
s17=s17+a(i+7); s27=s27+a(i+15); s37=s37+a(i+23)
enddo
s = s + s10+s11+...+s37

14

Node-Level Performance Engineering 15

Sum reduction

Questions
 When can this performance actually be achieved?

 No data transfer bottlenecks
 No other in-core bottlenecks

 Need to execute (3 LOADs + 3 ADDs + 1 increment + 1 compare + 1 branch)
in 3 cycles

 What does the compiler do?
 If allowed and capable, the compiler will do this automatically

 Is the compiler allowed to do this at all?
 Not according to language standards
 High optimization levels can violate language standards

 What about the “accuracy” of the result?
 Good question ;-)

Part I:
Introduction to compute node architecture

Memory Hierarchy and Data Transfers

How does data travel from memory to the CPU and back?

 Remember: Caches are organized
in cache lines (e.g., 64 bytes)

 Only complete cache lines are
transferred between memory
hierarchy levels (except L1 registers)

 Cache MISS: Load or store instruction does
not find the data in a cache level
 CL transfer required

 Example: Array copy A(:)=C(:)

 “Store miss” write allocate (WA)
 Techniques exists to avoid WA

17Node-Level Performance Engineering

Registers and caches: Data transfers in a memory
hierarchy

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1)MISS

write
allocate evict

(delayed)

3 CL
transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

C(:) A(:)

18Node-Level Performance Engineering

Putting the cores & caches together
AMD Epyc 7742 64-Core Processor («Rome»)

 Core features:
 Two-way SMT
 Two 256-bit SIMD FMA units (AVX2)
16 flops/cycle
 32 KiB L1 data cache per core
 512 KiB L2 cache per core

 64 cores per socket hierarchically built up from
 16 CCX with 4 cores and 16 MB of L3 cache
 2 CCX form 1 CCD (silicon die)
 8 CCDs connected to IO device “Infinity Fabric”

(memory controller & PCIe)

 8 channels of DDR4-3200 per IO device
 MemBW: 8 ch x 8 byte x 3.2 GHz = 204.8 GB/s

 NUMA-feature (Boot time option):
 Node Per Socket (NPS)=1 , 2 or 4
 NPS=4 4 UMA domains

Processor „Chip“ (Socket)

Part I:
Introduction to compute node architecture

GPU vs CPU

Node-Level Performance Engineering 20

Nvidia A100 “Ampere” SXM4 specs

Architecture
 54.2 B Transistors
 ~ 1.4 GHz clock speed
 ~ 108 “SM” units

 64 SP “cores” each (FMA)
 32 DP “cores” each (FMA)
 4 “Tensor Cores” each
 2:1 SP:DP

performance

 9.7 TFlop/s DP peak (FP64)
 40 MiB L2 Cache

 40 GB (5120-bit) HBM2
 MemBW ~ 1555 GB/s

(theoretical)
 MemBW ~ 1400 GB/s

(measured)

© Nvidia

𝑃𝑃𝑠𝑠𝑐𝑐𝑝𝑝𝑝𝑝𝑆𝑆𝐹𝐹 = 𝑛𝑛𝑆𝑆𝐹𝐹 ⋅ 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑛𝑛𝐹𝐹𝐹𝐹 � 𝑓𝑓

SMs # CUDA
cores/SM

FP
ops/cy

𝑛𝑛𝑆𝑆𝐹𝐹 = 108
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 32
𝑛𝑛𝐹𝐹𝐹𝐹 = 2flops

cy
𝑓𝑓 = 1.4Gcy

s

Node-Level Performance Engineering 21

Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU
light speed estimate
(per processor chip)

MemBW ~ 7 – 10x
Peak ~ 4 – 8x

2 x AMD EPYC 7742 ”Rome” NVidia Tesla A100
“Ampere”

Cores@Clock 2 x 64 @ 2.25 GHz 108 SMs @ ~1.4 GHz

FP32 Performance/core 72 GFlop/s ~179 GFlop/s
Threads@STREAM ~16 > 100000

FP32 peak 9.2 TFlop/s ~19.5 TFlop/s
Stream BW (meas.) 2 x 190 GB/s 1400 GB/s
Transistors / TDP ~2x40 Billion / 2x225 W 54 Billion/400 W

 Modern computer architecture has a rich “topology”

 Node-level hardware parallelism takes many forms
 Sockets/devices – CPU: 1-8, GPGPU: 1-6
 Cores – moderate (CPU: 4-64) to massive (GPGPU: 10’s-100’s)
 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)
 Superscalarity (CPU: 2-6)

 Exploiting performance: parallelism + bottleneck awareness
 “High Performance Computing” == computing at a bottleneck

Note:
 Performance features are largely independent of the programming

model
 But programming models are sensitive to architecture

 Topology/affinity influences overheads
 Standards do not contain (many) topology-aware features

22Node-Level Performance Engineering

Conclusions about architecture

	Part I:�Introduction to compute node architecture
	Multi-core today: Intel Xeon Skylake SP (2017)
	General-purpose cache based microprocessor core
	Part I:�Introduction to compute node architecture
	Pipelining of arithmetic/functional units
	5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N
	Superscalar Processors – Instruction Level Parallelism
	Core details: Simultaneous multi-threading (SMT) a.k.a. hyper-threading�“logical” cores multiple threads/processes run concurrently
	Core details: SIMD processing
	There is no single driving force for single core performance!
	A “simple” example: The sum reduction
	Applicable peak for the sum reduction (I)
	Applicable peak for the sum reduction (II)
	Applicable peak for the sum reduction (III)
	Sum reduction
	Part I:�Introduction to compute node architecture
	Registers and caches: Data transfers in a memory hierarchy
	Putting the cores & caches together�AMD Epyc 7742 64-Core Processor («Rome»)
	Part I:�Introduction to compute node architecture
	Nvidia A100 “Ampere” SXM4 specs
	Trading single thread performance for parallelism:�GPGPUs vs. CPUs
	Conclusions about architecture

