
Q&A for SC21 tutorial “Node-Level Performance Engineering”

Q: Can you make a Xeon CPU with a large L3 cache act like it has a smaller L3 cache for the
purpose of testing how code will run on a CPU with a smaller L3 cache?

A: Cache pirating: https://ieeexplore.ieee.org/document/6047185 limits the available amount of
cache by running a separate application that “steals” a well-defined amount of cache away from
the app you want to study. Cache Allocation Technology on Intel CPUs (see Sect. 17.17 in
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures
-software-developer-vol-3b-part-2-manual.pdf) is a hardware feature which allows you to limit
the available amount of cache for a core. Other vendors (AMD, Arm-based) have similar
technologies that go under different names.

Q: Is SMT detrimental in some situations? Perhaps for very parallel workloads, like large
Matrix operations.

A: On Intel and AMD CPUs, most relevant resources are available to a single running thread
even if SMT is enabled. This is not the case on other designs; e.g., on the Cavium/Marvell
ThunderX2 the single-thread performance may suffer for some codes if SMT is on. Another
effect is shared resources: If you run a software thread on every SMT hardware thread, all those
software threads need resources (first and foremost cache). If the resources are scarce, this
could mean that performance may suffer. We’ll see an example for such a code later in the part
about stencil algorithms.

Q: Does the performance equation you provided, used in slide 20 presentation 01,
account for memory transaction speed?

A: No it doesn’t. This is the pure “in-core” peak performance. It only considers computational
resources.

Q: MPI rank mapping: What are the major considerations when thinking about mapping
to L1, L2, L3 cache, ccNUMA?

A: There is no single answer. It depends on the hardware bottlenecks your code is up against
and which resources it needs. (1) Affinity should always be enforced, no matter if you use
OpenMP threads or MPI processes or something else. (2) If you know that each thread/process
needs a lot of cache and your code is memory bound then you might want to consider not using
all cores and “spread out” the threads/processes across the chip. If you know that neighboring
processes communicate a lot, you may want to place them close together so they can use the
shared cache(s) for exchanging messages. (3) For MPI codes, ccNUMA locality is often not
much of a problem because each process allocates and initializes its own memory.

https://ieeexplore.ieee.org/document/6047185
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf

Q: When doing microbenchmarking, do you think it is best to disable turbo boosting so the CPU
clock is a constant frequency? The ratio of CPU clocks to DRAM clocks would be changed if turbo
boost is disabled unless the DRAM clock frequency is also reduced.

A: During microbenchmarking, we always fix the clock frequency (i.e., no Turbo). This just takes out
one possible element of variation. And yes, the CPU-to-DRAM clock cycle ratio is changed if you
change the CPU clock only; you have to take this into account if memory access is a relevant factor
in the analysis. But even if you leave Turbo Mode on, you always have to measure what actual
frequency the core/s was/were running at because this may change depending on the code.

Q: What is your opinion of using the GCC vector extensions
(https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html) as a way to write code with good
AVX-512 performance?

A: Whatever makes the compiler produce good code is OK. We usually try everything possible to
write down plain C/Fortran and make the compiler understand what we want. Only if this fails do we
recommend to revert to more low-level methods such as intrinsics or vector extensions, but these
make the code less portable. As for how good the GVE code is compared with, e.g., intrinsics, we
cannot tell - but I would favor intrinsics because more compilers support it (e.g., not all of the GVE is
supported by the Intel compiler).

Q: The case study: stencils --- Is this from a published paper that I can read and cite?

A: The idea of layer conditions has been around for a while, although it was us who coined the term.
The best writeup of the layer condition concept is probably in:
H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil
computations using the Execution-Cache-Memory model. Proc. ICS15, the 29th International
Conference on Supercomputing, June 8-11, 2015, Newport Beach, CA.
DOI: 10.1145/2751205.2751240
Some useful links:

● Layer condition calculator: https://rrze-hpc.github.io/layer-condition
● Kerncraft modeling tool: https://github.com/RRZE-HPC/kerncraft
● INSPECT Intra-Node Stencil Performance Evaluation Collection:

https://rrze-hpc.github.io/INSPECT/

Q: Are all SpMVM problems unique and require alpha to be derived from previous runs?

A: Basically, yes. However, in some cases alpha will be small - so small as to be negligible. This
happens when the RHS fits completely in the cache. The optimistic (lower bound) nonzero alpha is

https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
http://www.cs.ucr.edu/~ics15/
http://dx.doi.org/10.1145/2751205.2751240
https://rrze-hpc.github.io/layer-condition
https://github.com/RRZE-HPC/kerncraft
https://rrze-hpc.github.io/INSPECT/

1/N_nzr. Anything beyond these special cases is a function of the matrix parameters (sparsity
pattern, sizes) and the hardware (cache sizes, number of threads sharing a cache).

Q: Any thoughts on which compiler tends to perform better (on average) related to SIMD
auto-vectorization? .e.g. comparing intel vs gcc.

A: There is no general answer. In cases where the compiler can really see through all abstractions
and understands 100% what’s going on, Intel tends to generate very good (sometimes beautiful)
SIMD code. Looking through abstractions, however, was not its strong suit. But again, this is a
moving target and such observations may change quickly. Also don’t forget that SIMD isn’t the only
thing that gives you performance.

Q: In the SpMVM comparison between 3 chips, the fastest hardware is not constant or tied to
Gbyte/s. How do you choose the proper hardware for a problem?

A: In the data on slide 15 of the SpMVM lecture, the A64FX has the highest memory bandwidth but it
is not the fastest on all matrices. There are several reasons for that, but the crucial insight is that raw
memory bandwidth, while important for SpMV, is not everything. Specifically, A64FX has some
special properties: Even with optimal code it needs almost all 12 cores of a ccNUMA domain to
saturate the memory bandwidth with SpMV. This means that anything that goes wrong (e.g., load
imbalance or a compiler not producing optimal code) will immediately cause a performance hit. The
GPU is much more tolerant in this respect because of its inherently dynamic execution and massive
parallelism. On top, the A64FX has four ccNUMA domains. If you need dynamic scheduling to
balance the load (because the matrix doesn’t have a nicely even distribution of nonzeros), this is a
problem because you will have nonlocal accesses and contention. This is not an issue on the GPU.

