PERFORMANCE MODELING OF
GRAPH PROCESSING WORKLOADS

Merijn Verstraaten'2, Ana Lucia Varbanescu’:3

N

A.L.Varbanescu@utwente.nl

(1 (2 (3
UNIVERSITY netherlands UNIVERSITY

X
il OF AMSTERDAM eSciencd=:-hi OF TWENTE.

Graph processing ...

... is / can be / will be everywhere!2

- Bioinformatics
- ' ie3

Pandemic analysis o
- Social networks analysis this conference
- Fraud detection
- Neural networks

alone!

1 Sherif Sakr et al.

“The Future Is Big Graphs: A Community View on Graph Processing Systems” — CACM Sept. 2021
2 Tim Hegeman, Alexandru losup

“Survey of Grpah Analysis Applications” - arXiv:1807.00382

3 https://neo4dj.com/graphs4good/covid-19/

https://neo4j.com/graphs4good/covid-19/

Large Scale Graph Processing

- Graph processing is (very) data-intensive
- 10x larger graph => 100x or 1000x slower processing

- Graph processing becomes (more) compute-intensive
- More complex queries => ?x slower processing

- Graph processing is (very) dataset-dependent
- Unfriendly graphs => ?x slower processing

We use parallel processing & architectures to enable

more complex analytics on larger graphs.

HPC Platforms

- Multi/many-core systems
Massive (data) parallelism

+

CPU GPU

- Built for hlgh thl’OUthUt processing MULTIPLE CORES THOUSANDS OF C
- Penalties for branches ‘0\\ *
- Penalties for load imbalance \((\0

Parallelism <=> Increased performance

More parallelism <=> Increased performance variability!

4 Andrew Lumsdaine et al. ’ ;,Ej ;;1':-2;:%' ﬁ!‘%*
“Challenges in Parallel Graph Processing” — Parallel Processing Letters 2007 '

Today’s headlines

2. Variability analysis
Case-studies: PageRank and BFS

3. Performance modeling
Analytical modeling vs. Data-driven/ML modeling

4. Take home message

2. Variability analysis

All experiments ...

- NVIDIA TitanX + CUDA 10.0
- Results presented on 9 graphs

Id Graph # Vertices # Edges Dataset

1 actor-collaboration 382,219 30,076,200 KONECT
2 amazon0601 403,394 3,387,390 KONECT
3 flixster 2,523,390 15,837,600 KONECT
4 jesterl 3512 8,272,720 KONECT
5 patentcite 3,774,770 16,518,900 KONECT
6 wikipedia link en 12,151,000 378,142,000 KONECT
7 wiki talk ru 457,017 919,790 KONECT
8 higgs-social network 456,626 14,855,800 SNAP

9 sx-stackoverflow-c2q 1,655,350 11,226,800 SNAP

PageRank calculation

- Calculates the PR value for all vertices

- Assign value to each vertex

- Repeat until convergence
- Collect PR for all incoming edges
- Update vertex PR

We use 7 versions + 2 warp-parallelism
parameterized ones

- Challenges

- No computation
- Load-balancing
- Irregular memory accesses

Image courtesy of: https://en.wikipedia.org/wiki/PageRank

PageRank: results

B Edge List 3 Vertex Pull BEEEE Vertex Pull Warp 16-64
EEE Reverse Edge List EEEE Vertex Pull NoDiv [Vertex Pull Warp NoDiv 16-64
EE®l Reverse Struct Edge List [HEEE Vertex Push B Vertex Push Warp 16-64
B Struct Edge List
100% 100%
Q
=
= 80%7 1 80%
c
=
@ 60%- -60%
o
Q
2L 40%; 40%
©
E 0o/ | L 0,
= 20% 20%
(@]
=

Different algorithms behave best.

Different algorithms behave worst.
The gap in execution time can be up to 2 orders of magnitude.

Choosing the wrong algorithm can really make a difference!

https://github.com/merijn/Belewitte

BFS traversal

- Traverses the graph layer by layer
- Starting from a given node

- Sensitive to ...
- High diameter

We use 6 versions + 2 warp-parallelism
parameterized ones

- No computation
- Load-balancing

- Irregular memory accesses Q O

e
BFS: results

B Edge List EEEE Struct Edge List [EEW Vertex Pull Warp 16-64
Bl Reverse Edge List E= Vertex Pull Bl Vertex Push Warp 16-64
EEEsl Reverse Struct Edge List EEEE Vertex Push

100% 100%

80% -80%
60% 60%
40% -40%

20%

20%

Normalised Runtime

Different algorithms behave best.

Different algorithms behave worst.
The gap in execution time can be up to 2 orders of magnitude.

Choosing the right / wrong algorithm can really make a difference!

https://github.com/merijn/Belewitte

3. Modeling

Choose the best algorithm

—

- Model the algorithm

- Basic analytical model (work & span)

- Calibrate to platform
- GPU, CPU, ...

- Model the dataset
- Size, dimension, topology ...

— T=1(P, A, D)

- Predict performance
- Plug the platform and graph parameters into algorithm model

- Rank solutions and pick best.

PageRank: Analytical models

- Different algorithms => different models

Tedge — (7 * |E| * Tread 17 |E| K Tatom)

V|
Tpush — (6 * |V| % Tread -+ |E| ¥ Tread o |E| & Tatom)

jessisy Jome g 71 K
Tpull = (5 * |V| & Tread + 3 % |E| * Tread 5y IVl * Twrite)
V1
TNoDiv == (5 o+ |V| o+ Tread + 2 % IEl * Tread + |V| * Twrite)

V
+ (3 % |V| % Tread _I_ 2 i |V| % Twrite + u % Cratom)

a7
v
= (8% |V|+ 2% |E|) * Tread + 3 * | V| * Tyrite + |32| -4 L

- Calibrate for the platform : T,eaqs Twrites Tatom - -
- Use dataset features: |E| and |V| from the graph specs

PageRank: poor model accuracy!

- Work-models are correct
- We capture correctly the number of operations

- Model calibration has failed
- Workload imbalance between threads within a warp

- Non-uniform memory access times due to coalescing, caching, and
atomic contention.

- Can we do any better?
- Tried modelling parallelism => too complex
- Tried performance counters => still not “stable” enough

Choose the best algorithm %

—

M)del the algorithm

- Basic analytical model (work & span)
-Xalibrate to platform _ T=f(P, A, D)
- GPU, CPU, ... S
-xodel the dataset

- Size, dimension, topology ...

- edict performance Only 50% accuracy ®

- Plug the platform and graph parameters into algorithm model

-%nk solutions and pick best.

The models

Long list of trials ... with various ratios failure/success

- Analytical model
- Predict execution time
- Able to predict work accurately
- Unable to accurately calibrate it
- Predict ranking
- Use relative cost of operations Still low accuracy
- Still unable to accurately calibrate it

- Data-driven models (machine learning)

- Predict execution time
- Use random forest

- Based on hardware counters (previous work)
- Based on graph features

Low accuracy.

OK accuracy,
High prediction cost

redict ranking
- Use decision trees High accuracy,

- Based on graph features Low prediction cost
Still not working for BFS!!!

-
BFS: best algorithm changes!

@ Edge List B Struct Edge List [EEE Vertex Pull Warp 16-64

BB Reverse Edge List E=3 Vertex Pull EEE Vertex Push Warp 16-64

== Reverse Struct Edge List EEEE Vertex Push
= 6.0x10¢ -6.0x10°
=
Q 6] L 6
= 4.0x10 4.0x10
=
(=
o 2.0x106 12.0%106

0.0x10¢°-

-0.0x10°

» Best algorithm changes per level
» (Gaps are even larger than for the full scale
» We have more data for every level

We must predict at every level, NOT at the full graph level !

Results on the actor-collaborations graph - KONECT

BFS: construct the best algorithm!

B Edge List EEEE Struct Edge List [N Vertex Pull Warp 16-64
B Reverse Edge List E=3 Vertex Pull BN Vertex Push Warp 16-64
EESl Reverse Struct Edge List EEEE Vertex Push Optimal
100% , 100%
Q ‘ o [
= 80%: . 80%
c
=
@ 60%/ -60%
o
Q
L 40%; 40%
©
E o/ L 0,
= 20% 20%
®]
=

» Optimal algorithm is the sum of the best per-level algorithms.
» Must switch implementations

If we predict best algorithm per level => we construct the best algorithm

BFS: construct the best algorithm!

- Predict ranking
- Determine the best algorithm per level
- Still depends on platform and dataset ...

- Construct the best overall algorithm
- Best algorithm per layer => best overall by construction

- Switching between algorithms is a challenge
- When?
- How?

Mix-and-match: build the best algorithm at run-time by

switching to the best implementation at every level*

*this is a generalization of the direction-switching BFS

Predicting ranking per level

- Based on decision trees
- Small number of samples

- Fairly easy to train o
_ _ Average prediction time: 144ns
- Model is fast to use at runtime Min BFS step: 20ms

- Training parameters: graph features and best algorithm
- Degree distribution (5 number summary and standard deviation)
- Frontier size
- Percentage discovered
- Vertex count
- Edge count

- Ranking Dataset: 248 graphs x ~11 root nodes
Accuracy: ~98%

Current workflow

Feature importance, which
is promising for making
sense of the results.

r

Data from the SNAP Use decision trees and
and KONECT repositories graph properties

cellbe: » Preprocess » Train » Test
data

Remove outliers (WiP).
Model-in-model?

Use at runtime.

Does it really work

Bz Mix-and-match =8 Optimal I Lonestar 2.0
B Best Non-switching EEE Gunrock
100% 100%
)
=
= 80%+ . 80%
=
=5
C 60%] -60%
5o
)
D 40%; -40%
©
g 20% 1 L20%
O
=
-0%

0%-

* Runtime switching is possible, (currently) with some memory overhead
« We are faster than the state-of-the art, on average, by 3x

Mix-and-match uses performance variability to build the best BFS per graph!

4. Take home message

-
P-A-D triangle

Algorithm

In progress
Algorithms for different
data types and graphs

Overstudied
Performance is enabled
Portability is disabled

Datase >“Iatform

Understudied

No systematic findings yet

Intuitive correlations

Must be correlated with the algorithm

Take home message

- Main challenges in performance modeling
- Performance depends on platform, algorithm, and dataset.
- No modeling strategies exist for datasets
- Analytical workload models are difficult to calibrate
- lterative algorithms (like BFS) require prediction per iteration
- Statistical models require good features selection

- Current status
- No accurate analytical performance models
- Per-level , per-algorithm ranking prediction works well

- Selection of “best-algorithm”
- Possible for PageRank

- Impossible for BFS => construct it with Mix-and-Match
» Mix-and-Match outperforms state-of-the-art.

Take home message

- Mix-and-match enables dynamic, runtime switching among
different versions of BFS
- A generalization of the direction-optimized BFS

- Machine learning model used to guide the switching
- We use decision-trees as they offer a good accuracy-applicability trade-off

- More to follow

- More algorithms & graphs & plaforms
- Reason about features impact per algorithm

Authors:

Ana: A.L.Varbanescu@utwente.nl
Merijn: merijn@inconsistent.nl

Code: https://github.com/merijn/Belewitte

https://github.com/merijn/Belewitte

