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Graph processing ... 
… is / can be / will be everywhere!1,2

- Bioinformatics 
- Pandemic analysis3

- Social networks analysis 
- Fraud detection
- Neural networks
- … 

1 Sherif Sakr et al. 
“The Future Is Big Graphs: A Community View on Graph Processing Systems” – CACM Sept. 2021
2 Tim Hegeman, Alexandru Iosup
“Survey of Grpah Analysis Applications” - arXiv:1807.00382
3 https://neo4j.com/graphs4good/covid-19/

5+ sessions in 
this conference 

alone! 

https://neo4j.com/graphs4good/covid-19/


Large Scale Graph Processing
• Graph processing is (very) data-intensive

• 10x larger graph => 100x or 1000x slower processing
• Graph processing becomes (more) compute-intensive

• More complex queries => ?x slower processing 
• Graph processing is (very) dataset-dependent

• Unfriendly graphs => ?x slower processing

We use parallel processing & architectures to enable 
more complex analytics on larger graphs.



HPC Platforms
• Multi/many-core systems

• Massive (data) parallelism 
• Built for high throughput processing 
• Penalties for branches 
• Penalties for load imbalance  

• Graph processing 4
• Data-driven computations
• Irregular memory accesses

• Poor data locality
• Unstructured problems
• Low computation-to-data access ratio

(mis)match? 

4 Andrew Lumsdaine et al. 
“Challenges in Parallel Graph Processing” – Parallel Processing Letters 2007

Parallelism <=> Increased performance 

More parallelism <=> Increased performance variability! 



Today’s headlines
1. Motivation
2. Variability analysis 

Case-studies: PageRank and BFS
3. Performance modeling 

Analytical modeling vs. Data-driven/ML modeling 
4. Take home message 



2. Variability analysis 



All experiments …  
• NVIDIA TitanX + CUDA 10.0
• Results presented on 9 graphs  



PageRank calculation
• Calculates the PR value for all vertices

• Assign value to each vertex 
• Repeat until convergence 

• Collect PR for all incoming edges 
• Update vertex PR 

• Sensitive to … 
• Graph density
• Degree distribution 
• ”sink” nodes

• Challenges
• No computation
• Load-balancing
• Irregular memory accesses

Image courtesy of: https://en.wikipedia.org/wiki/PageRank

We use 7 versions + 2 warp-parallelism 
parameterized ones  



PageRank: results

https://github.com/merijn/Belewitte

• Different algorithms behave best.
• Different algorithms behave worst. 
• The gap in execution time can be up to 2 orders of magnitude. 

Choosing the wrong algorithm can really make a difference! 

https://github.com/merijn/Belewitte


BFS traversal
• Traverses the graph layer by layer 

• Starting from a given node 
• Sensitive to … 

• High diameter 
• Graph density
• (dis)connected components
• … 

• Challenges
• No computation
• Load-balancing
• Irregular memory accesses

We use 6 versions + 2 warp-parallelism 
parameterized ones  



https://github.com/merijn/Belewitte

BFS: results 

• Different algorithms behave best.
• Different algorithms behave worst. 
• The gap in execution time can be up to 2 orders of magnitude. 

Choosing the right / wrong algorithm can really make a difference! 

https://github.com/merijn/Belewitte


3. Modeling



Choose the best algorithm
• Model the algorithm

• Basic analytical model (work & span) 
• Calibrate to platform 

• GPU, CPU, … 
• Model the dataset

• Size, dimension, topology … 

• Predict performance 
• Plug the platform and graph parameters into algorithm model 

• Rank solutions and pick best. 

T = f(P, A, D) 



PageRank: Analytical models 
• Different algorithms => different models

• Calibrate for the platform : Tread, Twrite, Tatom …
• Use dataset features: |E| and |V| from the graph specs 



PageRank: poor model accuracy! 
• Work-models are correct 

• We capture correctly the number of operations 

• Model calibration has failed
• Workload imbalance between threads within a warp
• Non-uniform memory access times due to coalescing, caching, and 

atomic contention.

• Can we do any better?
• Tried modelling parallelism => too complex 
• Tried performance counters => still not “stable” enough 



Choose the best algorithm
• Model the algorithm

• Basic analytical model (work & span) 
• Calibrate to platform 

• GPU, CPU, … 
• Model the dataset

• Size, dimension, topology … 

• Predict performance 
• Plug the platform and graph parameters into algorithm model 

• Rank solutions and pick best. 

T = f(P, A, D) 

✔

✖

✖

✖

✖

Only 50% accuracy L



The models 
Long list of trials … with various ratios failure/success
• Analytical model 

• Predict execution time
• Able to predict work accurately 
• Unable to accurately calibrate it

• Predict ranking 
• Use relative cost of operations
• Still unable to accurately calibrate it

• Data-driven models (machine learning) 
• Predict execution time 

• Use random forest
• Based on hardware counters (previous work)
• Based on graph features 

• Predict ranking 
• Use decision trees 

• Based on graph features 

Low accuracy.

Still low accuracy

OK accuracy,
High prediction cost

High accuracy,
Low prediction cost

Still not working for BFS!!! 



BFS: best algorithm changes! 

Results on the actor-collaborations graph - KONECT

• Best algorithm changes per level 
• Gaps are even larger than for the full scale
• We have more data for every level  

We must predict at every level, NOT at the full graph level ! 



BFS: construct the best algorithm! 

• Optimal algorithm is the sum of the best per-level algorithms. 
• Must switch implementations 

If we predict best algorithm per level => we construct the best algorithm



BFS: construct the best algorithm! 
• Predict ranking

• Determine the best algorithm per level 
• Still depends on platform and dataset … 

• Construct the best overall algorithm 
• Best algorithm per layer => best overall by construction
• Switching between algorithms is a challenge

• When? 
• How? 

Mix-and-match: build the best algorithm at run-time by  
switching to the best implementation at every level*    

*this is a generalization of the direction-switching BFS 



Predicting ranking per level 
• Based on decision trees

• Small number of samples 
• Fairly easy to train 
• Model is fast to use at runtime 

• Training parameters: graph features and best algorithm
• Degree distribution (5 number summary and standard deviation)
• Frontier size 
• Percentage discovered 
• Vertex count 
• Edge count 
• Ranking 

Average prediction time: 144ns
Min BFS step: 20ms 

Dataset: 248 graphs x ~11 root nodes  
Accuracy: ~98%



Current workflow 

Collect 
data Preprocess Train Test

Apply

Data from the SNAP 
and KONECT repositories

Remove outliers (WiP).
Model-in-model? 

Use decision trees and 
graph properties

Use at runtime.

Feature importance, which
is promising for making
sense of the results.



Does it really work? 

Mix-and-match uses performance variability to build the best BFS per graph! 

• Runtime switching is possible, (currently) with some memory overhead
• We are faster than the state-of-the art, on average, by 3x 

Mix-and-match



4. Take home message



P-A-D triangle
Algorithm

Dataset Platform

Overstudied
Performance is enabled
Portability is disabled

In progress 
Algorithms for different
data types and graphs

Understudied
No systematic findings yet
Intuitive correlations
Must be correlated with the algorithm 



Take home message
• Main challenges in performance modeling 

• Performance depends on platform, algorithm, and dataset. 
• No modeling strategies exist for datasets 
• Analytical workload models are difficult to calibrate
• Iterative algorithms (like BFS) require prediction per iteration 
• Statistical models require good features selection

• Current status
• No accurate analytical performance models
• Per-level , per-algorithm ranking prediction works well 
• Selection of “best-algorithm” 

• Possible for PageRank
• Impossible for BFS => construct it with Mix-and-Match

• Mix-and-Match outperforms state-of-the-art.



Take home message
• Mix-and-match enables dynamic, runtime switching among 

different versions of BFS
• A generalization of the direction-optimized BFS 
• Machine learning model used to guide the switching 

• We use decision-trees as they offer a good accuracy-applicability trade-off

• More to follow 
• More algorithms & graphs & plaforms
• Reason about features impact per algorithm 
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https://github.com/merijn/Belewitte

