
Node-Level Performance Engineering

Georg Hager, Thomas Gruber, Gerhard Wellein
Erlangen National High Performance Computing Center (NHR@FAU)

SC22 Full-Day Tutorial #125
Sunday, November 13, 2022

https://tiny.cc/NLPE-SC22

https://tiny.cc/NLPE-SC22

Node-Level Performance Engineering

https://tiny.cc/NLPE-SC22

Georg Hager, Thomas Gruber, Gerhard Wellein

Erlangen National High Performance Computing Center (NHR@FAU)

SC22 Full-Day Tutorial #125

Sunday, November 13, 2022

https://tiny.cc/NLPE-SC22

SC22 3Node-level Performance Engineering

Agenda

▪ Part I

▪ Introduction to compute node architecture

▪ Performance tools 1: topology and affinity

▪ Microbenchmarking as a tool

▪ Demo

▪ Introduction to the Roofline model

▪ Performance tools 2: hardware performance counters

▪ Demo

▪ Part II

▪ Case study: tall & skinny matrix-matrix multiplication

▪ Case study: Stencil codes

▪ Demo

▪ Case study: sparse matrix-vector multiplication

▪ Programming for Single Instruction Multiple Data (SIMD) parallelism

▪ Programming for ccNUMA

Prelude:
Scalability 4 teh win!

SC22 5Node-level Performance Engineering

Scalability Myth: Code scalability is the key issue

Prepared for the highly

parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only the compile options makes this code

scalable on an 8-core chip

-Ofast

SC22 6Node-level Performance Engineering

Scalability Myth: Code scalability is the key issue
!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency

is a key issue!

Upper limit from simple

performance model:

35 GB/s & 24

Byte/update

SC22 7Node-level Performance Engineering

Questions to ask in high performance computing

▪ Do I understand the performance behavior of my code?

▪ Does the performance behave in accordance with a model I have made?

▪ What is the optimal performance for my code on a given machine?

▪ High Performance Computing == Computing at the bottleneck

▪ Can I change my code so that the “optimal performance” gets higher?

▪ Circumventing/ameliorating the impact of the bottleneck

▪ My model yields wrong predictions – what’s wrong?

▪ This is the good case, because you learn something

▪ Performance monitoring / microbenchmarking may help clear up the situation

Modern computer architecture

An introduction for software developers

9Basic Node Architecture

Multi-core today: Intel Xeon Ice Lake (2021)

▪ Xeon “Ice Lake SP” (Platinum/Gold/Silver/Bronze):

Up to 40 cores running at 2+ GHz (+ “Turbo Mode” 3.7 GHz),

▪ Simultaneous Multithreading

→ reports as 80-way chip

▪ ~15 Billion Transistors / ~10 nm / up to 270 W

▪ Die size: up to ~600 mm2

▪ Clock frequency:

flexible ☺

2-socket server

.

Optional: “Sub-NUMA

Clustering” (SNC) mode

(a.k.a.) Cluster-on-Die

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595

(c) NHR@FAU 2022

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595

10Basic Node Architecture

General-purpose cache based microprocessor core

▪ Implements “Stored Program Computer”

concept (Turing 1936)

▪ Similar designs on all modern systems

▪ (Still) multiple potential bottlenecks

The clock cycle is the “heartbeat” of the core

Stored-program computer

Modern CPU core

(c) NHR@FAU 2022

Pipelining, Superscalarity, SIMD, SMT

In-core features

12Basic Node Architecture

Important in-core features

Pipelining:
Instruction execution in

multiple steps

Fetch Instruction 4

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode

Instruction 5

Decode

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

Superscalarity:
Multiple instructions

per cycle

Simultaneous Multi-Threading:
Multiple instruction sequences in parallel

A
[0

]
A

[1
]

A
[2

]
A

[3
]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

+

+

+

+

Single Instruction Multiple Data:
Multiple operations per instruction

(c) NHR@FAU 2022

(c) NHR@FAU 2022Basic Node Architecture

Instruction level parallelism (ILP): pipelining, superscalarity

Pipelining

Instructions

Superscalar execution

4-way superscalar:

→Massive boost in

instruction throughput

→ Instructions can be

reordered on the fly

I5 I4 I3 I2 I1

1 2 3 4 5Cycle

12345

Throughput:

1 instruction per cycle after pipeline is full

→ Speedup by factor 5

Single instruction takes 5 cycles (latency)

13

pipeline stages

14Basic Node Architecture

Superscalar out-of-order execution and steady state

Instruction execution

Hardware takes care of executing instructions as soon as their operands are available:

Out-Of-Order (OOO) execution

for(int i=1; i<n; ++i)

a[i] = a[i] + c;

LOAD

(Latency: 4 cy) ADD

(Latency: 3cy)

STORE

(Latency: 2 cy)

“Steady state:”

3 instructions/cy

(“3-way superscalar execution”)

Instructions Per Cycle: IPC=3

Cycles Per Instruction: CPI=0.33

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

Cycle 10

Cycle 11

Cycle 12

Cycle 13

Cycle 14

Cycle 15

Cycle 16

…

load a[1]

load a[2]

load a[3]

load a[4]

load a[5] add a[1]=c,a[1]

load a[6] add a[2]=c,a[2]

load a[7] add a[3]=c,a[3]

load a[8] add a[4]=c,a[4] store a[1]

load a[9] add a[5]=c,a[5] store a[2]

load a[10] add a[6]=c,a[6] store a[3]

load a[11] add a[7]=c,a[7] store a[4]

load a[12] add a[8]=c,a[8] store a[5]

load a[13] add a[9]=c,a[9] store a[6]

load a[14] add a[10]=c,a[10] store a[7]

load a[15] add a[11]=c,a[11] store a[8]

load a[16] add a[12]=c,a[12] store a[10]

… … …

(c) NHR@FAU 2022

15Basic Node Architecture

Simultaneous multi-threading (SMT)

S
ta

n
d
a
rd

 c
o
re

2
-w

a
y
 S

M
T

(c) NHR@FAU 2022

16Basic Node Architecture

SIMD processing

▪ Single Instruction Multiple Data (SIMD) operations allow the execution of the same operation on “wide”

registers from a single instruction

▪ x86 SIMD instruction sets:

▪ SSE: register width = 128 Bit → 2 double precision floating point operands

▪ AVX: register width = 256 Bit → 4 double precision floating point operands

▪ AVX-512: … you guessed it!

▪ Adding two registers holding double precision floating point operands:

A
[0

]
A

[1
]

A
[2

]
A

[3
]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

2
5

6
 b

it

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] →R2

(c) NHR@FAU 2022

17Basic Node Architecture

Single-core DP floating-point performance

𝑃𝑐𝑜𝑟𝑒 = 𝑛𝑠𝑢𝑝𝑒𝑟
𝐹𝑃 ∙ 𝑛𝐹𝑀𝐴 ∙ 𝑛𝑆𝐼𝑀𝐷 ∙ 𝑓

Super-

scalarity

FMA

factor

SIMD

factor

Clock

Speed

Typical

representatives

𝑛𝑠𝑢𝑝𝑒𝑟
𝐹𝑃

[inst./cy]
𝑛𝐹𝑀𝐴

𝑛𝑆𝐼𝑀𝐷

[ops/inst.]
@market Ex. model 𝑓 [Gcy/s] 𝑃𝑐𝑜𝑟𝑒[GF/s]

Nehalem 2 1 2 Q1/2009 X5570 2.93 11.7

Sandy Bridge 2 1 4 Q1/2012 E5-2680 2.7 21.6

Haswell 2 2 4 Q3/2014 E5-2695 v3 2.3 36.8

Broadwell 2 2 4 Q1/2016 E5-2699 v4 2.2 35.2

Skylake 2 2 8 Q3/2017 Gold 6148 2.4 76.8

AMD Zen 2 2 2 Q1/2017 Epyc 7451 2.3 18.4

AMD Zen2 2 2 4 Q4/2019 Epyc 7642 2.3 36.8

Fujitsu A64FX 2 2 8 Q2/2020 FX700 1.8 57.6

IBM POWER10 8 2 2 Q3/2020 ? 3.5 112 (?)

(c) NHR@FAU 2022

Example: The sum reduction

19Basic Node Architecture

A “simple” example: The sum reduction

▪ Loop-carried dependency on summation variable

▪ Execution stalls at every ADD until previous ADD is complete

→No pipelining?

→No SIMD?

…in single precision on an AVX-

capable core (ADD latency = 3 cy)

How fast can this loop possibly run

with data in the L1 cache?

for (int i=0; i<N; i++){

sum += a[i];

}

(c) NHR@FAU 2022

20Basic Node Architecture

Applicable peak for the sum reduction (I)

Plain scalar code, no SIMD

LOAD r1.0  0

i  1

loop:

LOAD r2.0  a(i)

ADD r1.0  r1.0 + r2.0

++i →? loop

result  r1.0

ADD pipes utilization:

→ 1/24 of ADD peak

s

S
IM

D
 l

a
n

e
s

for (int i=0; i<N; i++){

sum += a[i];

}

SIMD lane

(c) NHR@FAU 2022

21Basic Node Architecture

Applicable peak for the sum reduction (II)

Scalar code, 3-way “modulo variable expansion”

LOAD r1.0  0

LOAD r2.0  0

LOAD r3.0  0

i  1

loop:

LOAD r4.0  a(i)

LOAD r5.0  a(i+1)

LOAD r6.0  a(i+2)

ADD r1.0  r1.0 + r4.0 # scalar ADD

ADD r2.0  r2.0 + r5.0 # scalar ADD

ADD r3.0  r3.0 + r6.0 # scalar ADD

i+=3 →? loop

result  r1.0+r2.0+r3.0
→ 1/8 of ADD peak

s1 s2 s3

for (int i=0; i<N; i+=3){

s1 += a[i+0];

s2 += a[i+1];

s3 += a[i+2];

}

sum = sum + s1+s2+s3;

(c) NHR@FAU 2022

22Basic Node Architecture

Applicable peak for the sum reduction (III)

SIMD vectorization (8-way MVE) x

pipelining (3-way MVE)

LOAD [r1.0,…,r1.7]  [0,…,0]

LOAD [r2.0,…,r2.7]  [0,…,0]

LOAD [r3.0,…,r3.7]  [0,…,0]

i  1

loop:

LOAD [r4.0,…,r4.7]  [a(i),…,a(i+7)] # SIMD LOAD

LOAD [r5.0,…,r5.7]  [a(i+8),…,a(i+15)] # SIMD

LOAD [r6.0,…,r6.7]  [a(i+16),…,a(i+23)] # SIMD

ADD r1  r1 + r4 # SIMD ADD

ADD r2  r2 + r5 # SIMD ADD

ADD r3  r3 + r6 # SIMD ADD

i+=24 →? loop

result  r1.0+r1.1+...+r3.6+r3.7

→
A

D
D

 p
e

a
k

s11 s21 s31

s12 s22 s32

s13 s23 s33

s14 s24 s34

s15 s25 s35

s16 s26 s36

s17 s27 s37

s10 s20 s30

for (int i=0; i<N; i+=24){

s10 += a[i+0]; s20 += a[i+8]; s30 += a[i+16];

s11 += a[i+1]; s21 += a[i+9]; s31 += a[i+17];

s12 += a[i+2]; s22 += a[i+10]; s32 += a[i+18];

s13 += a[i+3]; s23 += a[i+11]; s33 += a[i+19];

s14 += a[i+4]; s24 += a[i+12]; s34 += a[i+20];

s15 += a[i+5]; s25 += a[i+13]; s35 += a[i+21];

s16 += a[i+6]; s26 += a[i+14]; s36 += a[i+22];

s17 += a[i+7]; s27 += a[i+15]; s37 += a[i+23];

}

sum = sum + s10+s11+…+s37;

(c) NHR@FAU 2022

23Basic Node Architecture

Sum reduction
Questions

▪ When can this performance actually be achieved?

▪ No data transfer bottlenecks

▪ No other in-core bottlenecks

▪ Need to execute (3 LOADs + 3 ADDs + 1 increment + 1 compare + 1 branch) in 3 cycles

▪ What does the compiler do?

▪ If allowed and capable, the compiler will do this automatically

▪ Is the compiler allowed to do this at all?

▪ Not according to language standards

▪ High optimization levels can violate language standards

▪ What about the “accuracy” of the result?
▪ Good question ;-)

(c) NHR@FAU 2022

In-cache performance (L2, L3)

Main memory performance

Memory Hierarchy

25Basic Node Architecture

Memory hierarchy

You can either build a

small and fast memory

or a

large and slow memory.

Purpose of many optimizations is to load data from fast memory

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth

[bytes/s]

Core

(c) NHR@FAU 2022

26Basic Node Architecture

Data transfers in a memory hiararchy

Caches help with getting instructions and data to the CPU “fast”

How does data travel from memory to the CPU and back?

▪ Remember: Caches are organized in cache lines (e.g., 64 bytes)

▪ Only complete cache lines are transferred between memory

hierarchy levels (except registers)

▪ Registers can only “talk” to the L1 cache

▪ MISS: Load or store instruction does not find the data in a cache

level

→ CL transfer required

▪ Example: Array copy A(:)=C(:)

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1)MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl) HIT

C(:) A(:)

(c) NHR@FAU 2022

Node topology and performance

Multicore

30Basic Node Architecture

Node topology of HPC systems

© Intel

~ 8 billion

transistors in

500 mm2

Registers

L1 cache

L2 cache

Core

core

core

core

core

core

core

core

core

core

core

core

core

…

Chip (many cores)

S
o
c
k
e
t

M
e
m

o
ry

M
e
m

o
ry

S
o
c
k
e
t

N
o

d
e

(2
 s

o
c
k
e
ts

,

p
o
s
s
ib

ly
 m

u
ltip

le
 c

h
ip

s

p
e

r s
o
c
k
e
t)

Pipelines

L3 cache

Potential scalability

bottlenecks

(c) NHR@FAU 2022

31Basic Node Architecture

Putting the cores & caches together

AMD Epyc 7742 64-Core Processor («Rome»)

▪ Core features:

▪ Two-way SMT

▪ Two 256-bit SIMD FMA units (AVX2)

→16 flops/cycle (actually 24 because 2 ADDs can be done alongside)

▪ 32 KiB L1 data cache per core

▪ 512 KiB L2 cache per core

▪ 64 cores per socket hierarchically built up from

▪ 16 CCX with 4 cores and 16 MiB of L3 cache

▪ 2 CCX form 1 CCD (silicon die)

▪ 8 CCDs connected to IO device “Infinity Fabric” (memory controller & PCIe)

▪ 8 channels of DDR4-3200 per IO device

▪ MemBW: 8 ch x 8 byte x 3.2 GHz = 204.8 GB/s

▪ ccNUMA-feature (Boot time option):

▪ Node Per Socket (NPS)=1 , 2 or 4

▪ NPS=4 → 4 ccNUMA domains

one socket

(c) NHR@FAU 2022

32Basic Node Architecture

Parallelism in a modern compute node

Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:

▪ Execution/SIMD units

▪ Cores

▪ Inner cache levels

▪ Sockets / ccNUMA domains

▪ Multiple accelerators

Shared resources:

▪ Outer cache level per socket

▪ Memory bus per socket

▪ Intersocket link

▪ PCIe bus(es)

▪ Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) NHR@FAU 2022

NVIDIA “Ampere” A100

vs.

AMD Zen2 “Rome”

GPGPU accelerators

35Basic Node Architecture

Nvidia A100 “Ampere” SXM4 specs

Architecture

▪ 54.2 B Transistors

▪ ~ 1.4 GHz clock speed

▪ ~ 108 “SM” units

▪ 64 SP “cores” each (FMA)

▪ 32 DP “cores” each (FMA)

▪ 4 “Tensor Cores” each

▪ 2:1 SP:DP

performance

▪ 9.7 TFlop/s DP peak (FP64)

▪ 40 MiB L2 Cache

▪ 40 GB (5120-bit) HBM2

▪ MemBW ~ 1555 GB/s (theoretical)

▪ MemBW ~ 1400 GB/s (measured)

𝑃𝑝𝑒𝑎𝑘
𝐷𝑃 = 𝑛𝑆𝑀 ⋅ 𝑛𝑐𝑜𝑟𝑒 ⋅ 𝑛𝐹𝑃 ∙ 𝑓

SMs
CUDA

cores/SM

FP

ops/cy

𝑛𝑆𝑀 = 108
𝑛𝑐𝑜𝑟𝑒 = 32

𝑛𝐹𝑃 = 2flopscy

𝑓 = 1.4Gcys

© Nvidia

(c) NHR@FAU 2022

36Basic Node Architecture

Trading single thread performance for parallelism:

GPGPUs vs. CPUs

GPU vs. CPU

light speed estimate

(per processor chip)

MemBW ~ 7 – 10x

Peak ~ 4 – 8x

2 x AMD EPYC 7742 ”Rome” NVidia Tesla A100 “Ampere”

Cores@Clock 2 x 64 @ 2.25 GHz 108 SMs @ ~1.4 GHz

FP32 Performance/core 72 GFlop/s ~179 GFlop/s

Threads@STREAM ~16 ~ 100000

FP32 peak 9.2 TFlop/s ~19.5 TFlop/s

Stream BW (meas.) 2 x 180 GB/s 1400 GB/s

Transistors / TDP ~2x40 Billion / 2x225 W 54 Billion/400 W

(c) NHR@FAU 2022

37Basic Node Architecture

Conclusions about architecture

▪ Performance is a result of

▪ How many instructions you require to implement an algorithm

▪ How efficiently those instructions are executed on a processor

▪ Runtime contribution of the triggered data transfers

▪ Modern computer architecture has a rich “topology”

▪ Node-level hardware parallelism takes many forms

▪ Sockets/devices – CPU: 1-4 or more, GPGPU: 1-8

▪ Cores – moderate (CPU: 20-128, GPGPU: 10-100)

▪ SIMD – moderate (CPU: 2-16) to massive (GPGPU: 10’s-100’s)

▪ Superscalarity (CPU: 2-6)

▪ Exploiting performance: parallelism + bottleneck awareness

▪ “High Performance Computing” == computing at a bottleneck

▪ Performance of programs is sensitive to architecture

(c) NHR@FAU 2022

Multicore Performance and Tools

Part 1: Topology, affinity control, clock speed

SC22 39Node-Level Performance Engineering

Tools for Node-level Performance Engineering

▪ Node Information
/proc/cpuinfo, numactl, hwloc, likwid-topology, likwid-powermeter

▪ Affinity control and data placement
OpenMP and MPI runtime environments, hwloc, numactl, likwid-pin

▪ Runtime Profiling
Compilers, gprof, perf, HPCToolkit, Intel Amplifier, gprof-ng, …

▪ Performance Analysis
Intel VTune, likwid-perfctr, PAPI-based tools, HPCToolkit, perf

▪ Microbenchmarking
STREAM, likwid-bench, lmbench, uarch-bench

likwid-topology

Reporting topology

40

https://youtu.be/mxMWjNe73SI

Node-Level Performance Engineering

https://youtu.be/mxMWjNe73SI

Output of likwid-topology

$ likwid-topology

--

CPU name: Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz

CPU type: Intel Icelake SP processor

CPU stepping: 6

**

Hardware Thread Topology

**

Sockets: 2

Cores per socket: 36

Threads per core: 1

--

HWThread Thread Core Die Socket Available

0 0 0 0 0 *

1 0 1 0 0 *

2 0 2 0 0 *

[…]

69 0 69 0 1 *

70 0 70 0 1 *

71 0 71 0 1 *

--

Socket 0: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 23 24 25 26 27 28 29 30 31 32 33 34 35)

Socket 1: (36 37 38 39 40 41 42 43 44 45 46 47 48 … 59 60 61 62 63 64 65 66 67 68 69 70 71)

--

All physical

processor IDs

Node-Level Performance Engineering SC22 41

SC22 42Node-Level Performance Engineering

Output of likwid-topology

**

Cache Topology

**

Level: 1

Size: 48 kB

Cache groups: (0) (1) (2) (3) (4) (5) … (64) (65) (66) (67) (68) (69) (70) (71)

--

Level: 2

Size: 1.25 MB

Cache groups: (0) (1) (2) (3) (4) (5) … (64) (65) (66) (67) (68) (69) (70) (71)

--

Level: 3

Size: 54 MB

Type: Unified cache

Associativity: 12

Number of sets: 73728

Cache line size: 64

Cache type: Non Inclusive

Shared by threads: 36

Cache groups: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 23 24 25 26 27 28 29 30 31 32 33 34 35)

(36 37 38 39 40 41 42 43 44 45 46 47 48 … 59 60 61 62 63 64 65 66 67 68 69 70 71)

--

Additional cache info
with -c option

SC22 43Node-Level Performance Engineering

Output of likwid-topology
**

NUMA Topology

**

NUMA domains: 4

--

Domain: 0

Processors: (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)

Distances: 10 11 20 20

Free memory: 119059 MB

Total memory: 128553 MB

--

Domain: 1

Processors: (18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)

Distances: 11 10 20 20

Free memory: 128196 MB

Total memory: 129020 MB

--

Domain: 2

Processors: (36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53)

Distances: 20 20 10 11

Free memory: 128033 MB

Total memory: 128978 MB

--

Domain: 3

Processors: (54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71)

Distances: 20 20 11 10

Free memory: 128719 MB

Total memory: 129017 MB

--

Sockets: 2

Threads per core:1

Sub-NUMA clustering (SNC)

enabled, SMT disabled!

Output similar to
numactl --hardware

likwid-pin

Enforcing thread/process affinity under Linux OS

https://youtu.be/PSJKNQaqwB0

https://youtu.be/PSJKNQaqwB0

SC22 45Node-Level Performance Engineering

DAXPY test on A64FX
Anarchy vs. thread pinning

No pinning

“Compact” pinning

(fill first socket first)

There are several reasons for caring about

affinity:

▪ Eliminating performance variation

▪ Making use of architectural features

▪ Avoiding resource contention

OpenMP-parallel

A(:)=A(:)+s*B(:)

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

Core-

memory

group

(CMG)

Mean-max-min

20 runs per point

SC22 46Node-Level Performance Engineering

More thread/process affinity (“pinning”) options

▪ Highly OS-dependent system calls but available on all systems
▪ Linux: sched_setaffinity()

▪ Windows: SetThreadAffinityMask()

▪ Hwloc project (http://www.open-mpi.de/projects/hwloc/)

▪ Support for “semi-automatic” pinning

▪ All modern compilers with OpenMP support
OpenMP 4.0 (OMP_PLACES, OMP_PROC_BIND)

▪ CPUset reduction utils: taskset or numactl

▪ Job scheduler like SLURM

▪ Affinity awareness in MPI libraries (OpenMPI, Intel MPI, …)

▪ Or likwid-pin and likwid-mpirun
https://youtu.be/IKW0kRLnhyc

http://www.open-mpi.de/projects/hwloc/
https://youtu.be/IKW0kRLnhyc

SC22 47Node-Level Performance Engineering

Overview likwid-pin

▪ Pins processes and threads to specific cores without touching code

▪ Directly supports pthreads, gcc OpenMP, Intel OpenMP

▪ Based on combination of wrapper tool together with overloaded pthread library

→ binary must be dynamically linked!

▪ Supports logical core numbering within topological entities (thread domains)

▪ Simple usage with physical (kernel) core IDs:

$ likwid-pin -c 0-3,4,6 ./myApp parameters

$ OMP_NUM_THREADS=4 likwid-pin -c 0-9 ./myApp params

▪ Simple usage with logical IDs (“thread groups expressions”):

$ likwid-pin -c S0:0-7 ./myApp params

$ likwid-pin –c C1:0-2 ./myApp params

SC22 48Node-Level Performance Engineering

LIKWID terminology: Thread group syntax

▪ The OS numbers all processors (hardware threads) on a node

▪ The numbering is enforced at boot time by the BIOS

▪ LIKWID introduces thread domains consisting of hardware threads sharing a

topological entity (e.g. socket or shared cache)

▪ A thread domain is defined by a single character + index

▪ Example for likwid-pin:
$ likwid-pin –c S0:0-3 ./a.out

▪ Thread group expressions may be chained with @:

$ likwid-pin –c S0:0-2@S1:0-2 ./a.out

Physical cores first!

+-------------------------------------+

| +------+ +------+ +------+ +------+ |

| | 0 4| | 1 5| | 2 6 | | 3 7 | |

| +------+ +------+ +------+ +------+ |

+-------------------------------------+

+-------------------------------------++-------------------------------------+

| +------+ +------+ +------+ +------+ || +------+ +------+ +------+ +------+ |

| | 0 8 | | 1 9 | | 2 10 | | 3 11 | || | 4 12 | | 5 13 | | 6 14 | | 7 15 | |

| +------+ +------+ +------+ +------+ || +------+ +------+ +------+ +------+ |

+-------------------------------------++-------------------------------------+

SC22 49Node-Level Performance Engineering

Available thread domains/unit prefixes (LIKWID 5.2)

C outer-level

cache group

M ccNUMA

domain

S socket

D die/chip

N node

SC22 50Node-Level Performance Engineering

Example: likwid-pin with Intel OpenMP

Running the STREAM benchmark with likwid-pin:
$ likwid-pin -c S0:0-3 ./stream

--

Double precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word

--

Array size = 20000000

Offset = 32

The total memory requirement is 457 MB

You are running each test 10 times

--

The *best* time for each test is used

EXCLUDING the first and last iterations

[pthread wrapper]

[pthread wrapper] MAIN -> 0

[pthread wrapper] PIN_MASK: 0->1 1->2 2->3

[pthread wrapper] SKIP MASK: 0x0

threadid 47308666070912 -> core 1 - OK

threadid 47308670273536 -> core 2 - OK

threadid 47308674476160 -> core 3 - OK

[... rest of STREAM output omitted ...]

Pin all spawned

threads in turn

Main PID always

pinned

Some threads might need

to be skipped

(e.g.runtime threads)

SC22 51Node-Level Performance Engineering

OMP_PLACES and Thread Affinity

Processor: smallest entity able to run a thread or task (hardware thread)

Place: one or more processors → thread pinning is done place by place

Free migration of the threads on a place between the processors of that place.

Or use explicit numbering, e.g. 8 places, each consisting of 4 processors:

▪ OMP_PLACES="{0,1,2,3},{4,5,6,7},{8,9,10,11}, … {28,29,30,31}"

▪ OMP_PLACES="{0:4},{4:4},{8:4}, … {28:4}"

▪ OMP_PLACES="{0:4}:8:4"

OMP_PLACES Place ==

threads Hardware thread (hyper-thread)

cores All HW threads of a single core

sockets All HW threads of a socket

abstract_name(num_places) Restrict # of places available

abstract name

<lower-bound>:<number of entries>[:<stride>]
Caveat: Actual behavior is implementation defined!

SC22 52Node-Level Performance Engineering

OMP_PROC_BIND variable / proc_bind() clause

Determines how places are used for pinning:

If there are more threads than places, consecutive threads are put into

individual places (“balanced”)

OMP_PROC_BIND Meaning

FALSE Affinity disabled

TRUE Affinity enabled, implementation defined

strategy

CLOSE Threads bind to consecutive places

SPREAD Threads are evenly scattered among places

MASTER Threads bind to the same place as the

master thread that was running before the

parallel region was entered

SC22 53Node-Level Performance Engineering

Some simple OMP_PLACES examples

Intel Xeon w/ SMT, 2x10 cores, 1 thread per physical core, fill 1 socket
OMP_NUM_THREADS=10

OMP_PLACES=cores

OMP_PROC_BIND=close

Intel Xeon, 2 sockets, 4 threads per socket (no binding within socket!)
OMP_NUM_THREADS=8

OMP_PLACES=sockets

OMP_PROC_BIND=close # spread will also do

Intel Xeon, 2 sockets, 4 threads per socket, binding to cores
OMP_NUM_THREADS=8

OMP_PLACES=cores

OMP_PROC_BIND=spread

Always prefer abstract places

instead of HW thread IDs!

SC22 54Node-Level Performance Engineering

MPI startup and hybrid pinning: likwid-mpirun

▪ How do you manage affinity with MPI or hybrid MPI/threading?

▪ In the long run a unified standard is needed

▪ Till then, likwid-mpirun provides a portable/flexible solution

▪ The examples here are for Intel MPI/OpenMP programs, but are also

applicable to other threading models

Pure MPI:

$ likwid-mpirun -np 16 -nperdomain S:2 ./a.out

Hybrid:

$ likwid-mpirun -np 16 -pin S0:0,1_S1:0,1 ./a.out

SC22 55Node-Level Performance Engineering

likwid-mpirun 1 MPI process per socket
$ likwid-mpirun –np 4 –pin S0:0-5_S1:0-5 ./a.out

$ likwid-mpirun –np 4 –nperdomain S:1 6 ./a.out

Intel MPI + compiler:
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 –env I_MPI_PIN_DOMAIN socket –env KMP_AFFINITY scatter ./a.out

Turbo steps and likwid-powermeter

likwid-setFrequencies

Clock speed under Linux OS

SC22 57Node-Level Performance Engineering

Which clock speed steps are there?

$ likwid-powermeter -i

--

CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz

CPU type: Intel Xeon Haswell EN/EP/EX processor

CPU clock: 2.30 GHz

--

Base clock: 2300.00 MHz

Minimal clock: 1200.00 MHz

Turbo Boost Steps:

C0 3300.00 MHz

C1 3300.00 MHz

C2 3100.00 MHz

C3 3000.00 MHz

C4 2900.00 MHz

[...]

C13 2800.00 MHz

Info for RAPL domain PKG:

Thermal Spec Power: 120 Watt

Minimum Power: 70 Watt

Maximum Power: 120 Watt

Maximum Time Window: 46848 micro sec

Info for RAPL domain DRAM:

Thermal Spec Power: 21.5 Watt

Minimum Power: 5.75 Watt

Maximum Power: 21.5 Watt

Maximum Time Window: 44896 micro sec

likwid-powermeter can also measure energy consumption,

but likwid-perfctr can do it better (see later)

Uses the RAPL interface

(Sandy Bridge+ and Zen+)

Note: AVX and AVX512

code on HSW+ may

execute even slower

than base frequency

SC22 58Node-Level Performance Engineering

Setting the clock frequency

▪ The “Turbo Mode” feature makes reliable benchmarking harder

CPU can change clock speed at its own discretion

▪ Clock speed reduction may save a lot of energy

▪ So how do we set the clock speed?

→ LIKWID to the rescue!
$ likwid-setFrequencies –l

Available frequencies:

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

$ likwid-setFrequencies –p

Current CPU frequencies:

CPU 0: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo 1

CPU 1: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo 1

CPU 2: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo 1

CPU 3: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo 1

[...]

$ likwid-setFrequencies –f 2.0 # min=max=2.0

[...]

$ likwid-setFrequencies –turbo 0 # turbo off

acpi-cpufreq

driver uses X.Y01

as turbo mode

SC22 59Node-Level Performance Engineering

Uncore clock frequency

▪ Starting with Intel Haswell, the Uncore (L3, memory controller,

UPI) provides own clock domain(s)

Uncore has considerable impact on power consumption
J. Hofmann et al.: An analysis of core- and chip-level architectural features in four generations of Intel server processors. Proc. ISC High Performance 2017.

DOI: 10.1007/978-3-319-58667-0_16.

J. Hofmann et al.: On the accuracy and usefulness of analytic energy models for contemporary multicore processors. Proc. ISC High Performance 2018. DOI:

10.1007/978-3-319-92040-5_2

$ likwid-setFrequencies –p

[...]

CPU 68: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo 1

CPU 69: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo 1

CPU 70: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo 1

CPU 71: governor performance min/cur/max 2.3/2.301/2.301 GHz Turbo 1

Current Uncore frequencies:

Socket 0: min/max 1.2/3.0 GHz

Socket 1: min/max 1.2/3.0 GHz

$ likwid-setFrequencies --umin 2.3 --umax 2.3

http://dx.doi.org/10.1007/978-3-319-58667-0_16
https://dx.doi.org/10.1007/978-3-319-92040-5_2

Microbenchmarking for architectural exploration

Probing of the memory hierarchy

Saturation effects

OpenMP barrier overhead

SC22 61Node-Level Performance Engineering

Motivation for Microbenchmarking as a tool

▪ Isolate small kernels to:

▪ Separate influences

▪ Determine specific machine capabilities (light speed)

▪ Gain experience about software/hardware interaction

▪ Determine programming model overhead

▪ …

▪ Possibilities:

▪ Readymade benchmark collections (epcc OpenMP, IMB)

▪ STREAM benchmark for memory bandwidth

▪ Implement own benchmarks (difficult and error prone)

▪ likwid-bench tool: Offers collection of benchmarks and framework for rapid

development of assembly code kernels

SC22 62Node-Level Performance Engineering

The parallel vector triad benchmark - A “swiss army knife” for microbenchmarking

▪ Report performance for different N, choose iter so that accurate time

measurement is possible

▪ This kernel is limited by data transfer performance for all memory

levels on all architectures, ever!

double striad_seq(double* restrict a, double* restrict b, double* restrict c,

double* restrict d, int N, int iter) {

double S, E;

S = getTimeStamp();

for(int j = 0; j < iter; j++) {

#pragma vector aligned

for (int i = 0; i < N; i++) {

a[i] = b[i] + d[i] * c[i];

}

if (a[N/2] > 2000) printf("Ai = %f\n",a[N-1]);

}

E = getTimeStamp();

return E-S;

}

Keeps smarty-pants

compilers from doing

“clever” stuff

Required to get optimal code with Intel

compiler icc! New icx unclear

SC22 63Node-Level Performance Engineering

A better way – use a microbenchmarking tool

▪ Microbenchmarking in high-level language is often difficult

▪ Solution: assembly-based microbenchmarking framework

▪ e.g., likwid-bench

$ likwid-bench -t triad_avx512_fma -W S0:28kB:1

benchmark type

topological entity (see likwid-pin)

working set

of threads

SC22 64Node-Level Performance Engineering

Schönauer triad on one CascadeLake core 2.5GHz

a[i] = b[i] + d[i] * c[i]

likwid-bench -t triad_avx512_fma -W S0:28kB:1

likwid-bench -t triad -W S0:28kB:1

SC22 65Node-Level Performance Engineering

Schönauer triad on one CascadeLake core 2.5GHz

x
7

 ?

What are the

theoretical limits?

a[i] = b[i] + d[i] * c[i]

SC22 67Node-Level Performance Engineering

Throughput triad on one CascadeLake node (2.5 GHz)

▪ How does the bandwidth scale

across cores?

▪ Are there any bottlenecks?

▪ How large are the caches?

▪ Scan $size and $threads

▪ Pin threads in chunks of 1 with

distance of 2 (skip SMT threads)

Performance scales in

L1 / L2 cache levels!

Drop stays at the

same place for

private caches!

L3 cache is not

scalable

Adding another socket

doubles the performance

without changing the

shape!

likwid-bench \

-t triad_avx512_fma

-W S0:$size:$threads:1:2

1
 S

o
c
k
e
t

SC22 68Node-Level Performance Engineering

Throughput triad on CascadeLake (memory close-up)

Performance saturation in

main memory!

Second socket adds

another memory

interface!

Saturating L3 cache

performance

Socket 1

Socket 2

SC22 69Node-Level Performance Engineering

Memory bandwidth saturation (read-only)

Fujitsu A64FX AMD Zen3

Milan

Intel Ice Lake 32c

SNC=off

AMD MI210

GPU

NVIDIA A100

GPU

Bandwidth

saturation on 1st

ccNUMA domain

Massive thread

parallelism needed

on GPUs to saturate

SC22 70Node-Level Performance Engineering

The OpenMP-parallel vector triad benchmark

OpenMP worksharing in the benchmark loop

S = getTimeStamp();

#pragma omp parallel

{

for(int j = 0; j < iter; j++) {

#pragma omp for

#pragma vector aligned

for (int i=0; i<N; i++) {

a[i] = b[i] + d[i] * c[i];

}

if (a[N-1] > 2000) printf("Ai = %f\n",a[N-1]);

}

}

E = getTimeStamp();

Implicit barrier

SC22 71Node-Level Performance Engineering

OpenMP vector triad on CascadeLake node (2.2 GHz)

Sync overhead grows

with number of threads

Impact on

performance even

with 1 thread

Synchronization (barrier) overhead

OpenMP performance issues on multicore

SC22 73Node-Level Performance Engineering

Synchronization of threads may be expensive!

On x86 systems there is no hardware support for synchronization!

▪ Next slide: Test OpenMP Barrier performance…

▪ for different compilers

▪ and different topologies: shared cache, shared socket, between sockets

▪ and different thread counts: 2 threads, full domain (chip, socket, node)

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

Threads are synchronized at explicit AND

implicit barriers. These are a main source

of overhead in OpenMP programs.

Determine costs via simple benchmark

Remark: Fujitsu A64FX provides support for hardware barriers but not integrated yet

SC22 75Node-Level Performance Engineering

Scaling of barrier cost

Comparison of barrier synchronization cost with increasing number of

threads

1. 2x Haswell 14-core CoD mode

2. Optimistic measurements

(repeated 1000s of times)

3. No impact from previous

activity in cache

4. Ideal scaling: logarithmic

Intel 17.0.4 gcc 6.2.0

SC22 76Node-Level Performance Engineering

Conclusions from the microbenchmarks

▪ Microbenchmarks can yield surprisingly deep insights

▪ Affinity matters!

▪ Almost all performance properties depend on the position of

▪ Data

▪ Threads/processes

▪ Consequences

▪ Know where your threads are running

▪ Know where your data is (see later for that)

▪ Bandwidth bottlenecks are ubiquitous

▪ Synchronization overhead may be an issue

▪ … and depends on the system topology!

▪ Many-core poses new challenges in terms of synchronization

“Simple” performance modeling:

The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.

Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers.

Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD

thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

SC22 78Node-Level Performance Engineering

A simple performance model for loops

Simplistic view of the hardware:

do i = 1,<sufficient>

<complicated stuff doing

N flops causing

V bytes of data transfer>

enddo

Execution units

max. performance

𝑷𝒑𝒆𝒂𝒌

Data source/sink

Data path,

bandwidth 𝒃𝑺
→ Unit: byte/s

Simplistic view of the software:

Computational intensity 𝑰 =
𝑵

𝑽

→ Unit: flop/byte

SC22 79Node-Level Performance Engineering

Naïve Roofline Model

How fast can tasks be processed at most? 𝑷 [flop/s]

The bottleneck is either

▪ The execution of work: 𝑃peak [flop/s]

▪ The data path: 𝐼 ∙ 𝑏𝑆 [flop/byte x byte/s]

This is the “Naïve Roofline Model”

▪ High intensity: P limited by execution

▪ Low intensity: P limited by data transfer

▪ “Knee” at 𝑃𝑝𝑒𝑎𝑘 = 𝐼 ∙ 𝑏𝑆:

Best use of resources

▪ Roofline is an “optimistic” model

(think “light speed”)

𝑃 = min(𝑃peak, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a

n
c
e

Ppeak

SC22 80Node-Level Performance Engineering

Roofline: application model and machine model

Machine properties:

𝑷𝒑𝒆𝒂𝒌 = 4
GF

s

𝒃𝑺 = 10
GB

s

Application property: I

double s=0, a[];

for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

𝑃 = 2.5 GF/s

𝐼 =
2 𝐹

8 𝐵
= 0.25 Τ𝐹 𝐵

Apply the naive Roofline model in practice

▪ Machine parameter #1: Peak performance: 𝑃𝑝𝑒𝑎𝑘
𝐹

𝑠

▪ Machine parameter #2: Memory bandwidth: 𝑏𝑆
𝐵

𝑠

▪ Code characteristic: Computational intensity: 𝐼
𝐹

𝐵

Machine model

Application model

SC22 81Node-Level Performance Engineering

Prerequisites for the Roofline Model

▪ Data transfer and core execution overlap perfectly!

▪ Either the limit is core execution or it is data transfer

▪ Slowest limiting factor “wins”; all others are assumed

to have no impact

▪ If two bottlenecks are “close,” no interaction is assumed

▪ Data access latency is ignored, i.e. perfect streaming mode

▪ Achievable bandwidth is the limit

▪ Chip must be able to saturate the bandwidth bottleneck(s)

▪ Always model the full chip

SC22 82Node-Level Performance Engineering

Roofline for architecture and code comparison

With Roofline, we can

▪ Compare capabilities of different machines

▪ Compare performance expectations for

different loops

▪ Roofline always provides upper bound – but is

it realistic?

▪ Simple case: Loop kernel has loop-carried

dependecncies → cannot achieve peak

▪ Other bandwidth bottlenecks may apply

3
D

 2
7

p
t
s
te

n
c
il

S
P

D
e
n

s
e

 M
V

M
 D

P

S
p

a
rs

e
 M

V
M

 D
P

Tensor core peak

No tensor cores

c
o

m
p

u
te

 b
o

u
n

d

e
v
e

ry
w

h
e

re

m
e

m
o

ry
 b

o
u

n
d

e
v
e

ry
w

h
e

re

SC22 83Node-Level Performance Engineering

A refined Roofline Model

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.

Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

1. Pmax = Applicable peak performance of a loop, assuming that data comes from the

level 1 cache (this is not necessarily Ppeak)

→ e.g., Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the slowest data path

utilized (code balance BC = I -1)

→ e.g., I = 0.167 Flop/Byte → BC = 6 Byte/Flop

3. bS = Applicable (saturated) peak bandwidth of the slowest data path utilized

→ e.g., bS = 56 GByte/s

Performance limit:

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆
𝐵𝐶

[Byte/s]

[Byte/Flop]

“F
lo

p
”

is
 n

o
t
th

e
 o

n
ly

u
s
e
fu

l
u
n
it
 o

f
w

o
rk

!

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

SC22 84Node-Level Performance Engineering

Refined Roofline models: graphical representation

Multiple ceilings may apply

▪ Different bandwidths / data paths

→ different inclined ceilings

▪ Different Pmax

→ different flat ceilings

In fact, Pmax should always come from

code analysis; generic ceilings are

usually impossible to attain

SC22 85Node-Level Performance Engineering

Hardware features of (some) Intel Xeon processors

Microarchitecture Ivy Bridge EP Broadwell EP Cascade Lake SP Ice Lake SP

Introduced 09/2013 03/2016 04/2019 06/2021

Cores ≤ 12 ≤ 22 ≤ 28 ≤ 40

LD/ST throughput per cy:

AVX(2), AVX512 1 LD + ½ ST
2 LD + 1 ST 2 LD + 1 ST 2 LD + 1 ST

SSE/scalar 2 LD || 1 LD & 1 ST

ADD throughput 1 / cy 1 / cy 2 / cy 2 / cy

MUL throughput 1 / cy 2 / cy 2 / cy 2 / cy

FMA throughput N/A 2 / cy 2 / cy 2 / cy

L1-L2 data bus 32 B/cy 64 B/cy 64 B/cy 64 B/cy

L2-L3 data bus 32 B/cy 32 B/cy 16+16 B/cy 16+16 B/cy

L1/L2 per core 32 KiB / 256 KiB 32 KiB / 256 KiB 32 KiB / 1 MiB 48 KiB / 1.25 MiB

LLC 2.5 MiB/core
inclusive

2.5 MiB/core
inclusive

1.375 MiB/core
exclusive/victim

1.5 MiB/core
exclusive/victim

Memory 4ch DDR3 4ch DDR3 6ch DDR4 8ch DDR4

Memory BW (meas.) ~ 48 GB/s ~ 62 GB/s ~ 115 GB/s ~ 160 GB/s

S
o

u
rc

e
:

h
tt

p
s
:/
/s

o
ft
w

a
re

.i
n
te

l.
c
o

m
/c

o
n
te

n
t/
w

w
w

/u
s
/e

n
/d

e
v
e

lo
p

/d
o
w

n
lo

a
d

/i

n
te

l-
6
4
-a

n
d
-i
a
-3

2
-a

rc
h

it
e

c
tu

re
s
-o

p
ti
m

iz
a
ti
o
n

-r
e

fe
re

n
c
e
-

m
a

n
u

a
l.
h

tm
l

SC22 86Node-Level Performance Engineering

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

ADD peak

(best possible

code)

no SIMD

3-cycle latency

per ADD if not

unrolled

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

See

architecture

intro

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak

(ADD+MULT)

Out of reach for this

code

P
(better loop code)

SC22 87Node-Level Performance Engineering

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

in single precision

analysis

Code analysis:

1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)

Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s

SC22 88Node-Level Performance Engineering

Tracking code optimizations in the Roofline Model

1. Hit the BW bottleneck by

good serial code
(e.g., Ninja C++ → Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., spatial loop blocking)

3. Increase intensity and go from

memory bound to core bound
(e.g., temporal blocking)

4. Hit the core bottleneck by

good serial code
(e.g., -fno-alias, SIMD intrinsics)

Core bound

Diagnostic / phenomenological Roofline modeling

Diagnostic modeling

▪ What if we cannot predict the intensity/balance?

▪ Code very complicated

▪ Code not available

▪ Parameters unknown

▪ Doubts about correctness of analysis

▪ Measure data volume 𝑉𝑚𝑒𝑎𝑠 (and work 𝑁𝑚𝑒𝑎𝑠)

▪ Hardware performance counters

▪ Tools: likwid-perfctr, PAPI, Intel Vtune,…

▪ Insights + benefits

▪ Compare analytic model and measurement → validate model

▪ Can be applied (semi-)automatically

▪ Useful in performance monitoring of user jobs on clusters

Intensity

P
e

rf
o

rm
a

n
c
e

Pmax

𝑃𝑚𝑒𝑎𝑠

𝑁𝑚𝑒𝑎𝑠

𝑉𝑚𝑒𝑎𝑠

SC22Node-Level Performance Engineering 91

SC22 92Node-Level Performance Engineering

Roofline and performance monitoring of clusters

Where are the “good”

and the “bad” jobs in

this diagram?

Intensity [flop/byte]

P
e
rf

o
rm

a
n
c
e
 [

G
fl
o
p

/s
]

https://github.com/RRZE-HPC/likwid/wiki/Tutorial%3A-Empirical-Roofline-Model

https://github.com/RRZE-HPC/likwid/wiki/Tutorial%3A-Empirical-Roofline-Model

SC22 93Node-Level Performance Engineering

Roofline conclusion

▪ Roofline = simple first-principle model for upper performance limit of data-

streaming loops

▪ Machine model (𝑃𝑚𝑎𝑥 , 𝑏𝑆) + application model (𝐼)

▪ Conditions apply, extensions exist

▪ Two modes of operation

▪ Predictive: Calculate 𝐼, calculate upper limit, validate model, optimize, iterate

▪ Diagnostic: Measure 𝐼 and 𝑃, compare with roof

▪ Challenge of predictive modeling: Getting 𝑃𝑚𝑎𝑥 and 𝐼 right

Performance analysis with hardware metrics

likwid-perfctr

SC22 104Node-Level Performance Engineering

Probing performance behavior

▪ How do we find out about the performance properties and

requirements of a parallel code?

Profiling via advanced tools is often overkill

▪ A coarse overview is often sufficient: likwid-perfctr

▪ Simple measurement of hardware performance metrics

▪ Preconfigured and extensible metric groups, list with
likwid-perfctr -a:

▪ Operating modes:

▪ Wrapper

▪ Stethoscope

▪ Timeline

▪ Marker API

BRANCH: Branch prediction miss rate/ratio

CLOCK: Clock frequency of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

ENERGY: Power and energy consumption

SC22 105Node-Level Performance Engineering

Best practices for Performance profiling

▪ Operation throughput (Flops/s)

▪ Overall instruction throughput (CPI or IPC)

▪ Instruction breakdown:

▪ FP instructions

▪ loads and stores

▪ branch instructions

▪ other instructions

▪ Instruction breakdown to SIMD width (scalar,

SSE, AVX, AVX512 for X86). (only arithmetic

instruction on most architectures)

▪ Data volumes and bandwidths to

▪ main memory (GB and GB/s)

▪ cache levels (GB and GB/s)

Useful diagnostic metrics are:

▪ Clock frequency (GHz)

▪ Power (W)

Focus on resource utilization and instruction mix!

Metrics to measure:

All above metrics can be acquired using performance groups:

MEM_DP, MEM_SP, BRANCH, DATA, L2, L3

SC22 106Node-Level Performance Engineering

likwid-perfctr wrapper mode

$ likwid-perfctr –g L2 –C S1:0-3 ./a.out

--

CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz […]

--

<<<< PROGRAM OUTPUT >>>>

--

Group 1: L2

+-----------------------+---------+------------+------------+------------+------------+

| Event | Counter | Core 14 | Core 15 | Core 16 | Core 17 |

+-----------------------+---------+------------+------------+------------+------------+

| INSTR_RETIRED_ANY | FIXC0 | 1298031144 | 1965945005 | 1854182290 | 1862521357 |

| CPU_CLK_UNHALTED_CORE | FIXC1 | 2353698512 | 2894134935 | 2894645261 | 2895023739 |

| CPU_CLK_UNHALTED_REF | FIXC2 | 2057044629 | 2534405765 | 2535218217 | 2535560434 |

| L1D_REPLACEMENT | PMC0 | 212900444 | 200544877 | 200389272 | 200387671 |

| L2_TRANS_L1D_WB | PMC1 | 112464863 | 99931184 | 99982371 | 99976697 |

| ICACHE_MISSES | PMC2 | 21265 | 26233 | 12646 | 12363 |

+-----------------------+---------+------------+------------+------------+------------+

[… statistics output omitted …]

+--------------------------------+------------+------------+------------+------------+

| Metric | Core 14 | Core 15 | Core 16 | Core 17 |

+--------------------------------+------------+------------+------------+------------+

| Runtime (RDTSC) [s] | 1.1314 | 1.1314 | 1.1314 | 1.1314 |

| Runtime unhalted [s] | 1.0234 | 1.2583 | 1.2586 | 1.2587 |

| Clock [MHz] | 2631.6699 | 2626.4367 | 2626.0579 | 2626.0468 |

| CPI | 1.8133 | 1.4721 | 1.5611 | 1.5544 |

| L2D load bandwidth [MBytes/s] | 12042.7388 | 11343.8446 | 11335.0428 | 11334.9523 |

| L2D load data volume [GBytes] | 13.6256 | 12.8349 | 12.8249 | 12.8248 |

| L2D evict bandwidth [MBytes/s] | 6361.5883 | 5652.6192 | 5655.5146 | 5655.1937 |

| L2D evict data volume [GBytes] | 7.1978 | 6.3956 | 6.3989 | 6.3985 |

| L2 bandwidth [MBytes/s] | 18405.5299 | 16997.9477 | 16991.2728 | 16990.8453 |

| L2 data volume [GBytes] | 20.8247 | 19.2321 | 19.2246 | 19.2241 |

+--------------------------------+------------+------------+------------+------------+

Always

measured for

Intel CPUs

Configured metrics

(this group)

Derived

metrics

SC22 107Node-Level Performance Engineering

likwid-perfctr stethoscope mode

▪ likwid-perfctr counts events on hardware threads

it has no notion of what kind of code is running (if any)

This allows you to “listen” to what is currently happening,

without any overhead:

$ likwid-perfctr -c N:0-11 -g FLOPS_DP -S 10s

▪ It can be used as cluster/server monitoring tool

▪ A frequent use is to measure a certain part of a long running parallel

application from outside

SC22 108Node-Level Performance Engineering

likwid-perfctr stethoscope example

Using Roofline for monitoring “live” jobs on a cluster
Based on measured BW and Flop/s data via likwid-perfctr

Where are the “good”

and the “bad” jobs in

this diagram?

Intensity [flop/byte]

P
e
rf

o
rm

a
n
c
e
 [

G
fl
o
p
/s

]

SC22 109Node-Level Performance Engineering

likwid-perfctr with MarkerAPI

▪ The MarkerAPI can restrict measurements to code regions

▪ The API only reads counters.
The configuration of the counters is still done by likwid-perfctr

▪ Multiple named regions support, accumulation over multiple calls

▪ Inclusive and overlapping regions allowed

▪ See LIKWID wiki for Fortran example

#include <likwid-marker.h>

LIKWID_MARKER_INIT; // must be called from serial region

. . .

LIKWID_MARKER_START(“Compute”); // call markers for each thread

. . .

LIKWID_MARKER_STOP(“Compute”);

. . .

LIKWID_MARKER_START(“Postprocess”);

. . .

LIKWID_MARKER_STOP(“Postprocess”);

. . .

LIKWID_MARKER_CLOSE; // must be called from serial region

Before LIKWID 5
use likwid.h

https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90

SC22 110Node-Level Performance Engineering

Compiling, linking, and running with MarkerAPI

Compile:

$CC -I /path/to/likwid.h -DLIKWID_PERFMON -c program.c

Link:

$CC -L /path/to/liblikwid program.o -llikwid

Run:

likwid-perfctr -C <MASK> -g <GROUP> -m ./a.out

→One separate block of output for every marked region

→Caveat: Marker API can cause overhead; do not call too frequently!

SC22 111Node-Level Performance Engineering

Summary of hardware performance monitoring

▪ Useful only if you know what you are looking for

▪ PM bears potential of acquiring massive amounts of data for nothing!

▪ Resource-based metrics are most useful

▪ Cache lines transferred, work executed, loads/stores, cycles

▪ Instructions, CPI, cache misses may be misleading

▪ Caveat: Processor work != user work

▪ Waiting time in libraries (OpenMP, MPI) may cause lots of instructions

▪ → distorted application characteristic

▪ Another very useful application of PM: validating performance models!

▪ Roofline is data centric → measure data volume through memory hierarchy

Case study:

Tall & Skinny Matrix-Transpose Times

Tall & Skinny Matrix (TSMTTSM)

Multiplication

SC22Node-Level Performance Engineering

TSMTTSM Multiplication

▪ Block of vectors → Tall & Skinny Matrix (e.g. 107 x 101 dense matrix)

▪ Row-major storage format (see SpMVM)

▪ Block vector subspace orthogonalization procedure requires, e.g., computation of

scalar product between vectors of two blocks

▪ → TSMTTSM Mutliplication

Assume: 𝛼 = 1; 𝛽 = 0

M

N K

113

Node-Level Performance Engineering

TSMTTSM Multiplication

General rule for dense matrix-matrix multiply: Use vendor-optimized GEMM, (e.g.,

Intel MKL1):

System Ppeak [GF/s] bS [GB/s] Size Perf. Efficiency

Intel Xeon E5 2660 v2

10c@2.2 GHz 176 GF/s 52 GB/s
SQ 160 GF/s 91%

TS 16.6 GF/s 6%

Intel Xeon E5 2697 v3

14c@2.6GHz 582 GF/s 65 GB/s
SQ 550 GF/s 95%

TS 22.8 GF/s 4%

Matrix sizes:

Square (SQ): M=N=K=15,000

Tall&Skinny (TS): M=N=16 ; K=10,000,000

1Intel Math Kernel Library (MKL) 11.3

complex double

double

TS@MKL:

Good or bad?

𝐶𝑚𝑛 = ෍

𝑘=1

𝐾

𝐴𝑚𝑘𝐵𝑘𝑛 , 𝑚 = 1. .𝑀, 𝑛 = 1. . 𝑁

SC22 114

M

N K

Node-Level Performance Engineering

TSMTTSM Roofline model

Computational intensity

𝐼 =
#flops

#bytes (slowest data path)

Optimistic model (minimum data transfer) assuming 𝑀 = 𝑁 ≪ 𝐾 and

double precision:

𝐼𝑑 ≈
2𝐾𝑀𝑁

8 𝐾𝑀 + 𝐾𝑁

F

B
=
𝑀

8

F

B

complex double:

𝐼𝑧 ≈
8𝐾𝑀𝑁

16 𝐾𝑀 + 𝐾𝑁

F

B
=
𝑀

4

F

B

SC22 115

Node-Level Performance Engineering

TSMTTSM Roofline performance prediction

Now choose 𝑀 = 𝑁 = 16→ 𝐼𝑑 ≈
16

8

F

B
and 𝐼𝑧 ≈

16

4

F

B
, i.e. 𝐵𝑑 ≈ 0.5

B

F
, 𝐵𝑧 ≈ 0.25

B

F

Intel Xeon E5 2660 v2 (𝑏𝑆 = 52
GB

s
) → P = 104

GF
s

(double)

Measured (MKL): 16.6
GF

s

Intel Xeon E5 2697 v3 (𝑏𝑆 = 65
GB

s
) → P = 240

GF
s

(double complex)

Measured (MKL): 22.8
GF

s

→ Potential speedup: 6–10x vs. MKL

SC22 116

Node-Level Performance Engineering

Can we implement a better TSMTTSM kernel than Intel?

Not shown: Inner Loop boundaries (n,m) known at compile time (kernel generation), k assumed to be even

Long Loop (k): Parallel

Outer Loop Unrolling

Compiler directives

Most operations

in cache

Reduction on

small result matrix

Thread-local copy of small (results) matrix

SC22 117

Node-Level Performance Engineering

TSMTTSM MKL vs. “hand crafted” (OPT)

System Ppeak / bS Version Performance RLM Efficiency

Intel Xeon E5 2660 v2

10c@2.2 GHz

176 GF/s

52 GB/s

TS OPT 98 GF/s 94 %

TS MKL 16.6 GF/s 16 %

Intel Xeon E5 2697 v3

14c@2.6GHz

582 GF/s

65 GB/s

TS OPT 159 GF/s 66 %

TS MKL 22.8 GF/s 9.5 %

TS: M=N=16 ; K=10,000,000

E5 2660 v2

double

E5 2697 v3

double complex

Speedup

vs. MKL:

5x – 25x

SC22 118

SC22 119Node-Level Performance Engineering

TSMTTSM conclusion

▪ Typical example of model-guided optimization

▪ “Invisible” 𝑃max ceiling with Intel MKL

▪ Hand-coded implementation ran much closer to limit

▪ Caveat: this is to exemplify the method; current MKL versions might have

improved!

Case study: A Jacobi smoother

The basics in two dimensions

SC22 121Node-Level Performance Engineering

Stencil schemes

▪ Stencil schemes frequently occur in PDE solvers on regular lattice structures

▪ Basically it is a sparse matrix vector multiply (spMVM) embedded in an iterative

scheme (outer loop)

▪ … but the regular access structure allows for matrix-free coding

▪ Complexity of implementation and performance depends on

▪ stencil operator, e.g. Jacobi-type, Gauss-Seidel-type, …

▪ discretization, e.g. 7-pt or 27-pt in 3D,…

do iter = 1, max_iterations

Perform sweep over regular grid: y(:)  x(:)

Swap y → x

enddo
y x

SC22 122Node-Level Performance Engineering

Jacobi-type 5-pt stencil sweep in 2D

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo

j

k

s
w

e
e
p

Lattice site

update

(LUP)

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice site updates per second” [LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)

Naive balance (incl. write allocate):

x(:, :) : 3 RD +

y(:, :) : 1 WR+ 1 RD

→ BC = 5 Words / LUP = 40 B / LUP (assuming double precision)

SC22 123Node-Level Performance Engineering

Jacobi 5-pt stencil 2D: data transfer analysis

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo

s
w

e
e
p

RD+WR y(j,k)

(incl. write allocate)

RD x(j+1,k)

Available in cache

(used 2 updates before)

RD x(j,k+1)RD x(j,k-1)

SC22 124Node-Level Performance Engineering

Jacobi 5-pt stencil 2D: Single-core performance

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

~24 B / LUP ~40 B / LUP

Code balance (BC)

measured with likwid-perfctr

Questions:

1. How to achieve

24 B/LUP also
for large jmax?

2. How to sustain

>800 MLUP/s for
jmax > 104 ?

Intel Xeon Platinum 8360Y

(“IcelakeSP”@2.4 GHz)

Intel Compiler 2022.1.0

Layer conditions

Case study: A Jacobi smoother

SC22 126Node-Level Performance Engineering

Analyzing the data flow

cached

Worst case: Cache not large enough to hold 3 layers (rows) of grid (assume “Least Recently Used” replacement

strategy)

j

k

x(0:jmax+1,0:kmax+1)

H
a
lo

 c
e
lls

H
a
lo

 c
e
lls

miss

miss

miss

hit

miss

miss

miss

hit

SC22 127Node-Level Performance Engineering

Analyzing the data flow

j

k

Worst case: Cache not large enough to hold 3 layers (rows) of grid (assume „Least Recently Used“ replacement

strategy)

x(0:jmax+1,0:kmax+1)

miss

miss

miss

hit

miss

miss

miss

hit

SC22 128Node-Level Performance Engineering

Analyzing the data flow

Reduce inner (j-)

loop dimension

successively

Best case: 3

“layers” of grid fit

into the cache!

j

k

x(0:jmax2+1,0:kmax+1)

x(0:jmax1+1,0:kmax+1)

miss

miss

miss

hit

miss

miss

miss

hit

miss

hit

hit

hit

SC22 129Node-Level Performance Engineering

Analyzing the data flow: Layer condition

2D 5-pt Jacobi-type stencil

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo 3 * jmax * 8B < CacheSize/2

“Layer condition”

double

precision

3 rows of
jmax Safety margin

(Rule of thumb)

Layer condition:
• Does not depend on outer loop length (kmax)

• No strict guideline (cache associativity, data traffic for y not included)

• Needs to be adapted for other stencils (e.g., long-range stencils)

SC22 130Node-Level Performance Engineering

Analyzing the data flow: Layer condition

3 * jmax * 8B < CacheSize/2

Layer condition fulfilled?

BC = 24 B / LUP

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo

YES

do k=1,kmax

do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo BC = 40 B / LUP

y: (1 RD + 1 WR) / LUP

NO

x: 3 RD / LUP

x: 1 RD / LUPy: (1 RD + 1 WR) / LUP

Optimization by spatial blocking

Case study: A Jacobi smoother

SC22 132Node-Level Performance Engineering

Enforcing a layer condition (2D 5-pt)

▪ How can we enforce a layer condition for all domain sizes ?

▪ Idea: Spatial blocking

▪ Reuse elements of x() as long as they stay in cache

▪ Sweep can be executed in any order, e.g. compute blocks in j-direction

“Spatial Blocking” of j-loop:

Determine for given CacheSize an appropriate jblock value:

do jb=1,jmax,jblock !

do k=1,kmax

do j= jb, min(jb+jblock-1,jmax) !inner loop length jblock

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo

enddo
New layer condition (blocking)

3 * jblock * 8B < CacheSize/2

jblock < CacheSize / 48B

SC22 133Node-Level Performance Engineering

Establish the layer condition by blocking

Split

domain into

subblocks:

e.g. block

size = 5

SC22 134Node-Level Performance Engineering

Establish the layer condition by blocking

Additional data

transfers (overhead)

at block boundaries!

SC22 135Node-Level Performance Engineering

Establish layer condition by spatial blocking

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

L1: 48 KB

L2: 1.25 MB

L3: 54 MB

Which cache to block for?jblock < CacheSize / 48 B

L2: CS=1.25 MB
jblock=min(jmax,25K)

L3: CS=54 MB
jblock=min(jmax,500K)

Intel Xeon Platinum 8360Y

(“IcelakeSP”@2.4 GHz)

Intel Compiler 2022.1.0

SC22 136Node-Level Performance Engineering

Validating the model: Memory code balance

M
e
a
s
u
re

d
 m

a
in

 m
e
m

o
ry

c
o
d
e
 b

a
la

n
c
e
 (
𝐵
𝐶
)

[B
y
te

/L
U

P
]

Blocking factor still a

little too large

Main memory access is not reason

for different performance

(but L3 access is!)

Intel Xeon Platinum 8360Y

(“IcelakeSP”@2.4 GHz)

Intel Compiler 2022.1.0

SC22 137Node-Level Performance Engineering

Stencil shapes and layer conditions in 2D

a) Long-range 𝑟 = 2: 5 layers (2𝑟 + 1)

b) Asymmetric: 3 layers

c) 2D box: 3 layers

(a) (b) (c)

OpenMP parallelization

Case study: A Jacobi smoother

SC22 139Node-Level Performance Engineering

OpenMP parallelization of the blocked 2D stencil

Straightforward OpenMP work sharing:

▪ Caveat: LC must be fulfilled per thread → shared cache causes smaller blocks!

do jb=1,jmax,jblock

!$OMP PARALLEL DO SCHEDULE(static)

do k=1,kmax

do j= jb, min(jb+jblock-1,jmax)

y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))

enddo

enddo

!$OMP END PARALLEL DO

enddo

Layer condition:

3 * jblock * 8B < CSt/2

Cache size available

per thread

T0

T1

T2

SC22 140Node-Level Performance Engineering

OpenMP parallelization and blocking for a shared cache

Layer conditions make for interesting effects

▪ Less and less shared cache available per

thread as #threads goes up

▪ LC may break “along the way”

▪ Solutions

1. Choose small enough block or domain

size

2. Adaptive blocking
jblock = CS/(#threads * 48B)

Conclusions from the stencil example

▪ We have made sense of the memory-bound performance vs. problem size

▪ “Layer conditions” lead to predictions of code balance

▪ “What part of the data comes from where” is a crucial question

▪ The model works only if the bandwidth is “saturated”

▪ In-cache modeling is more involved

▪ Avoiding slow data paths == re-establishing the most favorable layer condition

▪ Improved code showed the predicted speedup

▪ Optimal blocking factor can be estimated

▪ Food for thought

▪ Higher dimensions (beyond 2D)?

▪ Multi-dimensional loop blocking – would it make sense?

▪ Can we choose a “better” OpenMP loop schedule?

▪ What about temporal blocking?

SC22Node-Level Performance Engineering 142

▪ J. Hammer, G. Hager, J. Eitzinger, and G. Wellein: Automatic Loop Kernel Analysis and Performance Modeling With

Kerncraft. Proc. PMBS15, the 6th International Workshop on Performance Modeling, Benchmarking and Simulation of High

Performance Computer Systems, in conjunction with ACM/IEEE Supercomputing 2015 (SC15), November 16, 2015, Austin,

TX. DOI: 10.1145/2832087.2832092, Preprint: arXiv:1509.03778

▪ H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil computations using the

Execution-Cache-Memory model. Proc. ICS15,

DOI: 10.1145/2751205.2751240, Preprint: arXiv:1410.5010

▪ M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein: Chip-level and multi-node analysis of energy-optimized lattice-

Boltzmann CFD simulations. Concurrency and Computation: Practice and Experience (2015). DOI:10.1002/cpe.3489

Preprint: arXiv:1304.7664

▪ J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for iterative stencil computations.

Journal of Computational Science 2 (2), 130-137 (2011). DOI 10.1016/j.jocs.2011.01.010

▪ M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel temporal blocking of stencil codes

on multicore processors and clusters. Parallel Processing Letters 20 (4), 359-376 (2010).

▪ G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking for stencil computations by

multicore-aware wavefront parallelization. Proc. COMPSAC 2009. DOI: 10.1109/COMPSAC.2009.82

Stencil references

SC22Node-Level Performance Engineering 143

http://www.dcs.warwick.ac.uk/pmbs/pmbs15/PMBS15/Welcome.html
http://sc15.supercomputing.org/
http://dx.doi.org/10.1145/2832087.2832092
http://arxiv.org/abs/1509.03778
http://www.cs.ucr.edu/~ics15/
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010
http://dx.doi.org/10.1002/cpe.3489
http://arxiv.org/abs/1304.7664
http://dx.doi.org/10.1016/j.jocs.2011.01.010
http://dx.doi.org/10.1109/COMPSAC.2009.82

Case study:

Sparse Matrix-Vector Multiplication

SC22 145Node-Level Performance Engineering

Sparse Matrix Vector Multiplication (SpMV)

▪ Key ingredient in some matrix diagonalization algorithms

▪ Lanczos, Davidson, Jacobi-Davidson

▪ Store only Nnz nonzero elements of matrix and RHS, LHS vectors with Nr (number

of matrix rows) entries

▪ “Sparse”: Nnz ~ Nr

▪ Average number of nonzeros per row: Nnzr = Nnz/Nr

= + • Nr

General case:
some indirect
addressing
required!

SC22 146Node-Level Performance Engineering

SpMVM characteristics

▪ For large problems, SpMV is inevitably memory-bound

▪ Intra-socket saturation effect on modern multicores

▪ SpMV is easily parallelizable in shared and distributed memory

▪ Load balancing

▪ Communication overhead

▪ Data storage format is crucial for performance properties

▪ Most useful general format on CPUs:

Compressed Row Storage (CRS)

▪ Depending on compute architecture

SC22 147Node-Level Performance Engineering

CRS matrix storage scheme

…

column index

ro
w

 in
d

ex

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

▪ val[] stores all the nonzeros (length
Nnz)

▪ col_idx[] stores the column index
of each nonzero (length Nnz)

▪ row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

SC22 148Node-Level Performance Engineering

Case study: Sparse matrix-vector multiply

▪ Strongly memory-bound for large data sets

▪ Streaming, with partially indirect access:

▪ Usually many spMVMs required to solve a problem

▪ Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do

SC22 149Node-Level Performance Engineering

Performance characteristics

▪ Strongly memory-bound for large data sets → saturating performance

across cores on the chip

▪ Performance seems to depend on the matrix

▪ Can we explain

this?

▪ Is there a

“light speed”

for SpMV?

▪ Optimization?

???

???

10-core Ivy

Bridge, static

scheduling

SC22 150Node-Level Performance Engineering

Minimum amount of data traffic?

real*8 val(Nnz)

integer*4 col_idx(Nnz)

integer*4 row_ptr(Nr)

real*8 C(Nr)

real*8 B(Nc)

Min. load traffic [B]: (8 + 4) 𝑁𝑛𝑧 + 4 + 8 𝑁𝑟 + 8 𝑁𝑐
Min. store traffic [B]: 8 𝑁𝑟
Total FLOP count [F]: 2 𝑁𝑛𝑧

𝐵𝐶,𝑚𝑖𝑛 =
12 𝑁𝑛𝑧 + 20 𝑁𝑟 + 8 𝑁𝑐

2 𝑁𝑛𝑧

B

F
=

Nonzeros per row (𝑁𝑛𝑧𝑟 = ൗ𝑁𝑛𝑧
𝑁𝑟) or column (𝑁𝑛𝑧𝑐 = ൗ𝑁𝑛𝑧

𝑁𝑐)

Lower bound for code balance: 𝐵𝐶,𝑚𝑖𝑛 ≥ 6
B
F

→ 𝐼max ≤
1
6
F
B

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

12 + 20/𝑁𝑛𝑧𝑟 + 8/𝑁𝑛𝑧𝑐

2

B

F

SC22 151Node-Level Performance Engineering

SpMV node performance model – CRS (2)

𝐵𝐶,𝑚𝑖𝑛 =
12 + 20/𝑁𝑛𝑧𝑟 + 8/𝑁𝑛𝑧𝑐

2

𝐵

𝐹

𝐵𝐶 (𝛼) =
12 + 20/𝑁𝑛𝑧𝑟 + 𝟖 𝜶

2

𝐵

𝐹

Parameter (𝛼) quantifies
additional traffic for B(:)

(irregular access):

𝛼 ≥ ൗ1 𝑁𝑛𝑧𝑐

𝛼𝑁𝑛𝑧𝑐 ≥ 1
Consider square matrices: 𝑁𝑛𝑧𝑐 = 𝑁𝑛𝑧𝑟 and 𝑁𝑐 = 𝑁𝑟
Note: 𝐵𝐶 ൗ1 𝑁𝑛𝑧𝑟 = 𝐵𝐶,𝑚𝑖𝑛

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

•

SC22 152Node-Level Performance Engineering

The “𝜶 effect”

DP CRS code balance

▪ α quantifies the traffic

for loading the RHS

▪ 𝛼 = 0 → RHS is in cache

▪ 𝛼 = 1/𝑁𝑛𝑧𝑟 → RHS loaded once

▪ 𝛼 = 1 → no cache

▪ 𝛼 > 1 → Houston, we have a problem!

▪ “Target” performance = 𝑏𝑆/𝐵𝑐
▪ Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict 𝛼?

▪ Not in general

▪ Simple cases (banded, block-structured): Similar to layer condition analysis

→ Determine 𝛼 by measuring the actual memory traffic (→ measured code balance 𝐵𝐶
𝑚𝑒𝑎𝑠)

𝐵𝐶 (𝛼) =
12 + 20/𝑁𝑛𝑧𝑟+ 8 𝛼

2

𝐵

𝐹

= 6 + 4 𝛼 +
10

𝑁𝑛𝑧𝑟

𝐵

𝐹

SC22 153Node-Level Performance Engineering

Determine 𝜶 (RHS traffic quantification)

▪ 𝑉𝑚𝑒𝑎𝑠 is the measured overall memory data traffic (using, e.g., likwid-perfctr)

▪ Solve for 𝛼:

Example: kkt_power matrix from the UoF collection

on one Intel SNB socket

▪ 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

▪ 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

→ 𝛼 = 0.36, 𝛼𝑁𝑛𝑧𝑟 = 2.5

→ RHS is loaded 2.5 times from memory

𝐵𝐶 𝛼 = 6+4α+
10

𝑁𝑛𝑧𝑟

B

F
=

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 F
(= 𝐵𝐶

𝑚𝑒𝑎𝑠)

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

10

𝑁𝑛𝑧𝑟

𝐵𝐶 (𝛼)

𝐵𝐶,𝑚𝑖𝑛

= 1.11

11% extra traffic→

optimization potential!

SC22 154Node-Level Performance Engineering

Three different sparse matrices

Matrix 𝑁 𝑁𝑛𝑧𝑟 𝐵𝐶,𝑚𝑖𝑛 [B/F] 𝑃𝑜𝑝𝑡 [GF/s]

DLR1 278,502 143 6.1 7.64

scai1 3,405,035 7.0 8.0 5.83

kkt_power 2,063,494 7.08 8.0 5.83

DLR1 scai1 kkt_power

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, 𝑏𝑆 = 46.6 ΤGB s

→ Roofline: 𝑃𝑜𝑝𝑡 = ൗ
𝑏𝑆

𝐵𝐶,𝑚𝑖𝑛

SC22 155Node-Level Performance Engineering

Now back to the start…

▪ 𝑏𝑆 = 46.6 ΤGB s , 𝐵𝑐 = 6 ΤB F

▪ Maximum spMVM performance:

𝑃𝑚𝑎𝑥 = 7.8 ΤGF s

▪ DLR1 causes (almost) minimum CRS code

balance (as expected)

▪ scai1 measured balance:

𝐵𝑐
𝑚𝑒𝑎𝑠 ≈ 8.5 B/F > 𝐵𝐶,𝑚𝑖𝑛 (6% higher than min)

→ good BW utilization, slightly non-optimal 𝛼

▪ kkt_power measured balance:

𝐵𝑐
𝑚𝑒𝑎𝑠 ≈ 8.8 B/F > 𝐵𝐶,𝑚𝑖𝑛 (10% higher than min)

→ performance degraded by load imbalance,

fix by block-cyclic schedule

scai1, kkt_power upper limit

SC22 156Node-Level Performance Engineering

Investigating the load imbalance with kkt_power

static,2048

static

→ Fewer overall instructions, (almost)

BW saturation, 50% better

performandce with load balancing

→ CPI value unchanged!

Measurements with likwid-perfctr

(MEM_DP group)

SC22 157Node-Level Performance Engineering

SpMV node performance model – CPU

Intel Xeon Platinum 9242

24c@2.8GHz (turbo)

𝑏𝑆 = 122 𝐺𝐵/𝑠

B
a

la
n

c
e
 [
B

/F
] 𝛼𝑁𝑛𝑧𝑐

6
B

F

Matrices taken from: C. L. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig: ECM modeling and performance tuning

of SpMV and Lattice QCD on A64FX. Concurrency and Computation: Practice and Experience, e6512 (2021). DOI: 10.1002/cpe.6512

https://doi.org/10.1002/cpe.6512

SC22 158Node-Level Performance Engineering

Roofline analysis for spMVM

▪ Conclusion from the Roofline analysis

▪ The roofline model does not “work” for spMVM due to the RHS traffic uncertainties

▪ We have “turned the model around” and measured the actual memory traffic to determine the

RHS overhead

▪ Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

▪ Do not forget about load balancing!

▪ Sparse matrix times multiple vectors bears the potential of huge savings in data

volume

▪ Consequence: Modeling is not always 100% predictive. It‘s all about learning more

about performance properties!

Sparse Matrix-Vector Multiplication
on GPGPUs

SC22 160Node-Level Performance Engineering

What about GPUs?

▪ GPUs need

▪ Enough work per kernel launch in order to leverage their parallelism

▪ Coalesced access to memory (consecutive threads in a warp should access

consecutive memory addresses)

▪ Plain CRS for SpMV on GPUs is not a good idea

1. Short inner loop

2. Different amount of work per thread

3. Non-coalesced memory access

▪ Remedy: Use SIMD/SIMT-friendly storage format

▪ ELLPACK, SELL-C-σ, DIA, ESB,…

0

1

2

3

4

5

6

7

8

9

10

11

W
a
rp

 t
h
re

a
d
s

SC22 161Node-Level Performance Engineering

CRS SpMV in CUDA (y = Ax)

template <typename VT, typename IT>

__global__ static void

spmv_csr(const ST num_rows,

const IT * RESTRICT row_ptrs, const IT * RESTRICT col_idxs,

const VT * RESTRICT values, const VT * RESTRICT x,

VT * RESTRICT y)

{

ST row = threadIdx.x + blockDim.x * blockIdx.x; // 1 thread per row

if (row < num_rows) {

VT sum{};

for (IT j = row_ptrs[row]; j < row_ptrs[row + 1]; ++j) {

sum += values[j] * x[col_idxs[j]];

}

y[row] = sum;

}

} 𝐵𝑐 𝛼 = 6 + 4 𝛼 +
6

𝑁𝑛𝑧𝑟

𝐵

𝐹

No write-allocate on GPUs for consecutive stores

SC22 162Node-Level Performance Engineering

SpMV CRS performance on a GPU
CRS (1 thread per row)

NVIDIA Ampere A100

Memory bandwidth 𝑏𝑆 = 1400 GB/s

▪ Strong “𝛼 effect” – large deviation from

optimal 𝛼 for many matrices
▪ Many cache lines touched b/c every thread

handles one row → bad cache usage

▪ Mediocre memory bandwidth usage

(≪ 1400 GB/s) in many cases
▪ Non-coalesced memory access

▪ Imbalance across rows/threads of warps

SC22 163Node-Level Performance Engineering

SELL-C-𝜎

Idea

▪ Sort rows according to length within sorting scope 𝜎

▪ Store nonzeros column-major in zero-padded chunks of height 𝐶

zero padding

“Chunk occupancy”:

𝛽 =
𝑁𝑛𝑧

σ
𝑖=0
𝑁𝑐 𝐶 ⋅ 𝑙𝑖

𝑙𝑖: width of chunk 𝑖

M. Kreutzer et al.: A Unified Sparse Matrix

Data Format For Efficient General Sparse

Matrix-vector Multiplication On Modern

Processors With Wide SIMD Units, SIAM

SISC 2014, DOI: 10.1137/130930352

https://dx.doi.org/10.1137/130930352

SC22 164Node-Level Performance Engineering

SELL-C-𝜎 SpMV in CUDA (y=Ax)
template <typename VT, typename IT> __global__ static void

spmv_scs(const ST C, const ST n_chunks, const IT * RESTRICT chunk_ptrs,

const IT * RESTRICT chunk_lengths, const IT * RESTRICT col_idxs,

const VT * RESTRICT values, const VT * RESTRICT x, VT * RESTRICT y)

{

ST row = threadIdx.x + blockDim.x * blockIdx.x;

ST c = row / C; // the no. of the chunk

ST idx = row % C; // index inside the chunk

if (row < n_chunks * C) {

VT tmp{};

IT cs = chunk_ptrs[c]; // points to start indices of chunks

for (ST j = 0; j < chunk_lengths[c]; ++j) {

tmp += values[cs + idx] * x[col_idxs[cs + idx]];

cs += C;

}

y[row] = tmp;

}

}

0

1

2

3

4

5

W
a

rp
 t
h

re
a

d
s

SC22 165Node-Level Performance Engineering

Code balance of SELL-C-σ (y=Ax)

When measuring 𝐵𝐶
𝑚𝑒𝑎𝑠, take care to use the “useful”

number of flops (excluding zero padding) for work

𝐵𝑆𝐸𝐿𝐿 𝛼, 𝛽, 𝑁𝑛𝑧𝑟 =
1

𝛽

8 + 4

2
+
8𝛼 + 𝛽(8 + 4/𝐶)/𝑁𝑛𝑧𝑟

2

bytes

flop

=
6

𝛽
+ 4𝛼 +

𝛽(4 + 2/𝐶)

𝑁𝑛𝑧𝑟

bytes

flop

LHS update (write only)

chunk index

Matrix data &

column index

Optimal 𝛼 =
𝛽

𝑁𝑛𝑧𝑟

SC22 166Node-Level Performance Engineering

How to choose the parameters 𝐶 and 𝜎 on GPUs?

▪ 𝐶

▪ 𝑛 × warp size to allow good utilization of GPU threads

and cache lines

▪ 𝜎

▪ As small as possible, as large as necessary

▪ Large 𝜎 reduces zero padding (brings 𝛽 closer to 1)

▪ Sorting alters RHS access pattern → 𝛼 depends on 𝜎

SC22 167Node-Level Performance Engineering

SpMV node performance model – GPU
CRS (1 thread per row) SELL-32-128

NVIDIA Ampere A100

𝑏𝑆 = 1400 GB/s

Single Instruction Multiple Data (SIMD) processing

SC22 175Node-Level Performance Engineering

SIMD terminology

A word on terminology

▪ SIMD == “one instruction → several operations”

▪ “SIMD width” == number of operands that fit into a register

▪ No statement about parallelism among those operations

▪ Original vector computers: long registers, pipelined execution,

but no parallelism

(within the instruction)

Today

▪ x86: most SIMD instructions fully parallel

▪ “Short Vector SIMD”

▪ Some exceptions on some architectures (e.g., vdivpd)

▪ NEC Tsubasa: 32-way parallelism but SIMD width = 256 (DP)

A
[0

]
A

[1
]

A
[2

]
A

[3
]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

+

+

+

+

R0 R1 R2

SC22 176Node-Level Performance Engineering

Scalar execution units

Register width

▪ 1 operand

for (int j=0; j<size; j++){

A[j] = B[j] + C[j];

}

= +

Scalar execution

SC22 177
Node-Level Performance Engineering

Data-parallel execution units (short vector SIMD)

= +

for (int j=0; j<size; j++){

A[j] = B[j] + C[j];

}

Register width

▪ 1 operand

▪ 2 operands (SSE)

▪ 4 operands (AVX)

▪ 8 operands (AVX512)

Best code requires vectorized

LOADs, STOREs, and arithmetic!

SIMD execution

SC22 178Node-Level Performance Engineering

Data types in 32-byte SIMD registers

Supported data types depend on actual SIMD instruction set

Scalar slot

The Basics

SIMD

SC22 180Node-Level Performance Engineering

SIMD processing – Basics

Steps (done by the compiler) for “SIMD processing”

for(int i=0; i<n; i++)

C[i]= A[i] + B[i];

for(int i=0; i<n; i+=4){

C[i] = A[i] + B[i];

C[i+1]= A[i+1] + B[i+1];

C[i+2]= A[i+2] + B[i+2];

C[i+3]= A[i+3] + B[i+3];}

//remainder loop handling

LABEL1:

VLOAD R0  A[i]

VLOAD R1  B[i]

V64ADD[R0,R1] → R2

VSTORE R2 → C[i]

ii+4

i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of
A[i] to register R0, B[i] in R1

Add the corresponding 64 Bit entries in
R0 and R1 and store the 4 results to R2

Store R2(256 Bit) to address starting at C[i]

This should

not be done

by hand!

SC22 181Node-Level Performance Engineering

SIMD processing: Roadblocks

▪ No SIMD vectorization for loops with data dependencies:

▪ “Pointer aliasing” may prevent vectorization

C/C++ allows: A=&C[-1] and B=&C[-2] → C[i]=C[i-1]+C[i-2]

→ data dependency → no SIMD

▪ If pointer aliasing does not occur in code, tell the compiler:

–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)

restrict keyword (C only!):

for(int i=1; i<n; i++)

A[i] = A[i-1] * s;

void f(double *A, double *B, double *C, int n) {

for(int i=0; i<n; ++i)

C[i] = A[i] + B[i];

}

void f(double *restrict A, double *restrict B, double *restrict C, int n) {…}

SC22 182Node-Level Performance Engineering

How to leverage SIMD: your options

Options:

▪ The compiler does it for you

(but: aliasing, alignment, language, abstractions)

▪ Compiler directives (pragmas) – OpenMP 4.0++ has ample support

▪ Alternative programming models for compute kernels (OpenCL, ispc)

▪ Intrinsics (restricted to C/C++)

▪ Implement directly in assembly

Example: x86 SIMD (SSE) intrinsics

#include <x86intrin.h>

...

for (int j=0; j<size; j+=16){

t0 = _mm_loadu_ps(data+j);

t1 = _mm_loadu_ps(data+j+4);

t2 = _mm_loadu_ps(data+j+8);

t3 = _mm_loadu_ps(data+j+12);

sum0 = _mm_add_ps(sum0, t0);

sum1 = _mm_add_ps(sum1, t1);

sum2 = _mm_add_ps(sum2, t2);

sum3 = _mm_add_ps(sum3, t3);

}

SC22 183Node-Level Performance Engineering

Vectorization compiler options (Intel)

▪ The compiler will vectorize starting with –O2

▪ To enable specific SIMD extensions use the –x option:
-xSSE2, -xSSE3, -xSSSE3, -xSSE4.1, -xSSE4.2, -xAVX, …

▪ -xAVX on Sandy/Ivy Bridge processors

▪ -xCORE-AVX2 on Haswell/Broadwell

▪ -xCORE-AVX512 on Skylake (certain models) and Icelake

Recommended option:

▪ -xHost will optimize for the architecture you compile on

▪ To really enable 512-bit SIMD with current Intel compilers you need to
set -qopt-zmm-usage=high (not available for new icx)

SC22 184Node-Level Performance Engineering

User-mandated vectorization (OpenMP 4)

▪ Since OpenMP 4.0 SIMD features are a part of the OpenMP standard

▪ #pragma omp simd enforces vectorization

▪ Essentially a standardized “go ahead, no dependencies here!”

Do not lie to the compiler!

▪ Prerequesites

▪ Countable loop

▪ Innermost loop

▪ Must conform to for-loop style of OpenMP worksharing constructs

▪ There are additional clauses:
reduction, vectorlength, private, collapse, ...

for (int j=0; j<n; j++) {

#pragma omp simd reduction(+:b[j:1])

for (int i=0; i<n; i++) {

b[j] += a[j][i];

}

}

SC22 185Node-Level Performance Engineering

Limits of the SIMD benefit

Why does SIMD usually not give the expected speedup?

→ Analyze time contributions for data and execution
for(int i=0; i<size; i++)

sum += data[i];

Registers &

execution units

L1 cache

L2 cache

L3 cache

Memory

Scalar: 4 cy

SSE2: 2 cy

AVX: 1 cy

Required time per 8 iterations:

1 cy for CL

transfer

Full SIMD benefit

for data in L1

Always the same

regardless of SIMD

2 cy for CL

transfer

Always the same

regardless of SIMD

2 cy for CL

transfer

Always the same

regardless of SIMD

Intel Ice Lake

2.4 GHz

SC22 186Node-Level Performance Engineering

Rules and guidelines for vectorizable loops

1. Inner loop

2. Countable (loop length can be determined at loop entry)

3. Single entry and single exit

4. Straight line code (no conditionals) – unless masks can be used

5. No function calls (exceptions: SIMD declared functions, intrinsic math)

Better performance with:

1. Simple inner loops with unit stride (contiguous data access)

2. Minimize indirect addressing

3. Align data structures to SIMD width boundary (minor impact)

In C use the restrict keyword and/or const qualifiers and/or compiler options to

rule out array/pointer aliasing

Keep it

simple,

stupid!

SC22 187Node-Level Performance Engineering

SIMD conclusions

▪ Short-vector SIMD = data-parallel execution on the instruction level

▪ Best option: make the compiler employ SIMD instructions

▪ SIMD is an in-core feature

▪ Boosts work per cycle in core (peak performance)

▪ The further away the data, the less benefit

▪ If the code is memory bound, you may not even care

Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

SC22 189Node-Level Performance Engineering

ccNUMA – The “other affinity”

▪ ccNUMA:

▪ Whole memory is transparently accessible by

all processors

▪ but physically distributed across multiple

locality domains (LDs)

▪ with varying bandwidth and latency

▪ and potential contention (shared memory

paths)

▪ How do we make sure that memory access is

always as "local" and "distributed" as

possible?

Note: Page placement is implemented in units of

OS pages (often 4 KiB, possibly more)

SC22 190Node-Level Performance Engineering

How much does nonlocal access cost?

Example: AMD “Naples” dual-socket system

(8 chips, 2 sockets, 48 cores):

STREAM Triad bandwidth measurements [Gbyte/s]

S
o

c
k
e

t
0

S
o

c
k
e

t
1

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

CPU node

MEM node

▪ numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

--preferred=<node> a.out # map pages on <node>

and others if <node> is full

--interleave=<nodes> a.out # map pages round robin across

all <nodes>

▪ Examples:

for m in `seq 0 7`; do

for c in `seq 0 7`; do

env OMP_NUM_THREADS=6 \

numactl --membind=$m likwid-pin –c M${c}:0-5 ./stream

done

done

numactl --interleave=0-7 likwid-pin -c E:N:8:1:12 ./stream

▪ But what is the default without numactl?

SC22 191Node-Level Performance Engineering

numactl as a simple ccNUMA locality tool :

How do we enforce some locality of access?

ccNUMA map scan

for Naples system

SC22 192Node-Level Performance Engineering

ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the processor that first touches it!

(Except if there is not enough local memory available)

▪Caveat: “to touch” means “to write,” not “to allocate”

▪ Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE/sizeof(double)

huge[i] = 0.0;

▪ It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

SC22 193Node-Level Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

Simplest case: explicit initialization

SC22 194Node-Level Performance Engineering

Coding for ccNUMA data locality

integer,parameter :: N=10000000

allocate(A(N), B(N))

READ(1000) A

!$OMP parallel do

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

allocate(A(N), B(N))

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

Sometimes initialization is not so obvious: I/O cannot be easily parallelized, so “localize”

arrays before I/O

SC22 195Node-Level Performance Engineering

Coding for Data Locality

▪ Required condition: OpenMP loop schedule of initialization must be the same as in all

computational loops

▪ Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to be sure…

▪ Imposes some constraints on possible optimizations (e.g. load balancing)

▪ Presupposes that all worksharing loops with the same loop length have the same thread-

chunk mapping

▪ If dynamic scheduling/tasking is unavoidable, the problem cannot be solved completely if a

team of threads spans more than one LD

▪ Static parallel first touch is still a good idea

▪ How about global objects?

▪ Initialized before main() is called

▪ If communication vs. computation is favorable, might consider properly placed copies of

global data

▪ C++: Arrays of objects and std::vector<> are by default initialized sequentially

▪ STL allocators provide an elegant solution

SC22 196Node-Level Performance Engineering

Diagnosing bad locality

▪ If your code is cache bound, you might not notice any

locality problems

▪ Otherwise, bad locality limits scalability

(whenever a ccNUMA node boundary is crossed)
▪ Just an indication, not a proof yet

▪ Running with numactl --interleave might give

you a hint
▪ See later

▪ Consider using performance counters
▪ likwid-perfctr can be used to measure non-local memory

accesses

▪ Example:

$ likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

serial init.

c
c
N

U
M

A
d

o
m

a
in

 b
o
u
n
d

a
ry

SC22 197Node-Level Performance Engineering

Using performance counters for diagnosis

▪ Intel Ivy Bridge EP node (running 2x5 threads):

measure NUMA traffic

▪ Summary output:

Caveat: NUMA metrics vary strongly between CPU models

+--------------------------------------+--------------+-------------+-------------+--------------+

| Metric | Sum | Min | Max | Avg |

+--------------------------------------+--------------+-------------+-------------+--------------+

| Runtime (RDTSC) [s] STAT | 4.050483 | 0.4050483 | 0.4050483 | 0.4050483 |

| Runtime unhalted [s] STAT | 3.03537 | 0.3026072 | 0.3043367 | 0.303537 |

| Clock [MHz] STAT | 32996.94 | 3299.692 | 3299.696 | 3299.694 |

| CPI STAT | 40.3212 | 3.702072 | 4.244213 | 4.03212 |

| Local DRAM data volume [GByte] STAT | 7.752933632 | 0.735579264 | 0.823551488 | 0.7752933632 |

| Local DRAM bandwidth [MByte/s] STAT | 19140.761 | 1816.028 | 2033.218 | 1914.0761 |

| Remote DRAM data volume [GByte] STAT | 9.16628352 | 0.86682464 | 0.957811776 | 0.916628352 |

| Remote DRAM bandwidth [MByte/s] STAT | 22630.098 | 2140.052 | 2364.685 | 2263.0098 |

| Memory data volume [GByte] STAT | 16.919217152 | 1.690376128 | 1.69339104 | 1.6919217152 |

| Memory bandwidth [MByte/s] STAT | 41770.861 | 4173.27 | 4180.714 | 4177.0861 |

+--------------------------------------+--------------+-------------+-------------+--------------+

$ likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

About half of the overall

memory traffic is caused by

the remote domain!

OpenMP STREAM triad on a dual AMD Epyc 7451 (“Naples”)

(6 cores per LD)

1. Parallel init: Correct parallel initialization

2. LD0: Force data into LD0 via numactl –m 0

3. Interleaved: numactl --interleave <LD range>

SC22Node-Level Performance Engineering 198

SC22 199Node-Level Performance Engineering

A weird observation

L
o

n
g
e

r
ru

n
ti
m

e

▪ Experiment: memory-bound Jacobi solver with sequential data initialization

▪ No parallel data placement at all!

▪ Expect no scaling across LDs

▪ Convergence threshold 𝛿
determines the runtime

▪ The smaller 𝛿, the longer the run

▪ Observation

▪ No scaling across LDs for large 𝛿
(runtime 0.5 s)

▪ Scaling gets better with smaller 𝛿
up to almost perfect efficiency 𝜀
(runtime 91 s)

▪ Conclusion

▪ Something seems to “heal” the bad

access locality on a time scale of tens of seconds

SC22 200Node-Level Performance Engineering

Riddle solved: NUMA balancing

▪ Linux kernel supports automatic page migration

$ cat /proc/sys/kernel/numa_balancing

0

$ echo 1 > /proc/sys/kernel/numa_balancing # activate

▪ Active on all current Linux distributions, some performance impact for

single core execution

▪ Parameters control aggressiveness

▪ Default behavior is “take it slow”

▪ Do not rely on it! Parallel first touch is still a good idea!

$ ll /proc/sys/kernel/numa*

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_delay_ms

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_max_ms

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_min_ms

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_size_mb

SC22 201Node-Level Performance Engineering

Summary on ccNUMA issues

▪ Identify the problem

▪ Is ccNUMA an issue in your code?

▪ Simple test: run with numactl --interleave

▪ Consider performance counters if available

▪ Apply first-touch placement in initialization loops

▪ Consider loop lengths and static scheduling

▪ C++ and global/static objects may require special care

▪ NUMA balancing is active on many Linux systems today

▪ Automatic page migration

▪ Slow process, may take many seconds (configurable)

▪ Not a silver bullet

▪ Still a good idea to do parallel first touch

▪ If dynamic scheduling cannot be avoided

▪ Consider round-robin placement as a quick (but non-ideal) fix

▪ OpenMP 5.0 has some data affinity support

SC22 202Node-Level Performance Engineering

Tutorial conclusion

▪ Know your system (node) architecture

▪ Enforce affinity

▪ Back-of-the-envelope models are extremely useful

▪ Modeling is not always predictive

▪ Bottleneck awareness rules

▪ Performance is not about tools. Use your brain!

