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Goals and challanges

Analytic performance modeling
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Starting point
Analytic (first-principles) performance modeling:

Constructing a simplified model for the interaction 
between software and hardware in order to understand 

lowest-order performance behavior

 Basic questions addressed by analytic performance models
 What is the bottleneck? 
 What is the next bottleneck after optimization? 
 Impact of hardware features  co-design, architectural exploration

 What if the model fails?
 We learn something
 We may still be able to use the model in a less predictive way
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Examples for white-/gray-box models in computing

𝑆𝑆 𝑁𝑁 =
1

𝑠𝑠 + 1 − 𝑠𝑠
𝑁𝑁 + 𝑐𝑐(𝑁𝑁)

Amdahl’s Law with 
communication

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑙𝑙 +
𝐿𝐿
𝐵𝐵

Hockney model for 
message transmission 

time

serial fraction

program speedup latency

msg. length

bandwidth

𝑇𝑇exec = max 𝑇𝑇calc,𝑇𝑇data

Roofline model for 
loop code execution 

time

time for computation

time for data transfer

𝑇𝑇exec = 𝑓𝑓(𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑇𝑇data,𝑇𝑇𝑛𝑛𝑛𝑛)

ECM model for loop 
code execution time

non-overlapping execution

time for data transfer

overlapping execution
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General application pattern
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time

parallel(i=0..N) { // N>>1
update(data);

}

Runtime model:  𝑇𝑇 = 𝑓𝑓($CODE,$HARDWARE)



Composite analytic models
Plausible assumption: 𝑇𝑇 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐 + 𝑇𝑇𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐

In practice, 𝑇𝑇 ≠ 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐 + 𝑇𝑇𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐 and it can go in either direction

e.g., 
max 𝑇𝑇𝐵𝐵𝐵𝐵,𝑇𝑇𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓

e.g., 

𝜆𝜆 +
𝑉𝑉
𝐵𝐵
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Idle wave propagation and (de)synchronization phenomena
• A. Afzal, G. Hager, and G. Wellein: Propagation and Decay of Injected One-Off Delays on Clusters: A Case 

Study. Proc. 2019 IEEE International Conference on Cluster Computing (CLUSTER), Albuquerque, NM, 
September 23-26, 2019. DOI: 10.1109/CLUSTER.2019.8890995

• A. Afzal, G. Hager, and G. Wellein: Desynchronization and Wave Pattern Formation in MPI-Parallel and 
Hybrid Memory-Bound Programs. In: P. Sadayappan, B. Chamberlain, G. Juckeland, H. Ltaief (eds): High 
Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science, vol 12151. 
Springer, Cham. Available with Open Access. DOI: 10.1007/978-3-030-50743-5_20

• A. Afzal, G. Hager, and G. Wellein: Delay Flow Mechanisms on Clusters. 
Poster at EuroMPI 2019. EuroMPI2019_AHW-Poster.pdf EuroMPI2019-AHW-Summary.pdf

• A. Afzal, G. Hager, and G. Wellein: Analytic Modeling of Idle Waves in Parallel Programs: Communication, 
Cluster Topology, and Noise Impact. ISC High Performance 2021 Digital, 
June 24 – July 2, 2021, Frankfurt, Germany. DOI: 10.1007/978-3-030-78713-4_19

• A. Afzal, G. Hager, and G. Wellein: An analytic performance model for overlapping execution 
of memory-bound loop kernels on multicore CPUs. Concurrency and Computation: Practice 
and Experience 34(10), e6816 (2022). Available with Open Access. DOI: 10.1002/cpe.681

Ayesha Afzal
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https://ieeexplore.ieee.org/xpl/conhome/8884608/proceeding
https://doi.org/10.1109/CLUSTER.2019.8890995
https://doi.org/10.1007/978-3-030-50743-5_20
https://eurompi19.inf.ethz.ch/
http://nhr.cms.rrze.uni-erlangen.de/wp-content/blogs.dir/757/files/2019/09/EuroMPI2019_AHW-Poster.pdf
http://nhr.cms.rrze.uni-erlangen.de/wp-content/blogs.dir/757/files/2019/09/EuroMPI2019-AHW-Summary.pdf
https://dx.doi.org/10.1007/978-3-030-78713-4_19
http://doi.org/10.1002/cpe.6816


Idle wave propagation and decay
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Markidis et al. (2015)

Simulator-based analysis

Idle waves perceived as 
“damped linear waves”

Classical wave equation 
postulated for continuum 
description

S. Markidis et al.: Idle waves in high-performance computing. Phys. Rev. E 91(1), 013306 (2015). 
DOI: 10.1103/PhysRevE.91.013306

https://doi.org/10.1103/PhysRevE.91.013306
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Research questions
Setting: MPI- or hybrid-parallel bulk-synchronous barrier-free programs
 How do “disturbances” propagate?

 Injected idle periods
 Dependence on communication characteristics

 How do idle waves interact with each other, with noise, and 
with the hardware?
 Idle wave decay 

(noise-induced, bottleneck-induced, topology-induced)
 How do computational waves form? Instabilities?

 Core-bound vs. memory-bound
 Amplitude of the computational wave?

 Continuum description?
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Idle wave propagation speed for scalable code
Assumptions:
 Scalable code (on ccNUMA domain)
 alternates between execution and communication phases
 has inter-process dependencies via point-to-point communication 

Simplest case: Next-neighbor (e.g., 1-D halo) communication

Number of communication partners and details of communication grouping 
influence the speed  DOI: 10.1007/978-3-030-78713-4_19

http://doi.org/10.1007/978-3-030-78713-4_19
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Communication topology and idle wave speed

Long-distance point-to-point communication  fast idle waves
arXiv:2205.04190

https://arxiv.org/abs/2205.04190
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Idle waves interact nonlinearly

 A wave-like 
description cannot
be based on a linear
model

 Basis for noise-
induced decay of 
idle waves

DOI: 10.1109/CLUSTER.2019.8890995

https://doi.org/10.1109/CLUSTER.2019.8890995
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Noise-induced idle wave decay
 System or application noise “eats away” on the idle wave
 Decay rate proportional to integrated noise power
 Statistical details do not matter

DOI: 10.1007/978-3-030-78713-4_19

https://dx.doi.org/10.1007/978-3-030-78713-4_19
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Topological idle wave decay
 Topological boundaries 

(ccNUMA domains, 
sockets, nodes) cause 
fine-grained noise which 
dampens the idle wave

 Highly system 
dependent

 No decay in 
homogeneous situation 
(round-robin placement)

DOI: 10.1007/978-3-030-78713-4_19

https://dx.doi.org/10.1007/978-3-030-78713-4_19


Bandwidth-induced idle wave decay and 
computational waves
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Idle wave propagation and bottleneck-induced decay
Analytical model for idle wave speed with scalalble workload:
DOI: 10.1007/978-3-030-78713-4_19

Decay even on silent system:
DOI: 10.1007/978-3-030-50743-5_20

https://dx.doi.org/10.1007/978-3-030-78713-4_19
https://doi.org/10.1007/978-3-030-50743-5_20
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Intricate dynamics of bottleneck-driven idle wave decay

ccNUMA
domain #1

ccNUMA
domain #2
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Computational wave as an echo of an idle wave
 Decaying idle wave leaves many 

processes desynchronized

 Inter-process skew  automatic 
potential communication overlap

 Computational wavefront == rank-
time location of all processes at a 
given iteration

 Memory boundedness is a 
prerequisite
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Spontaneous asynchronicity
There are always idle waves, and they have consequences…

Opportunity for automatic communication overlap
“Spontaneous symmetry breaking”?

LBM D3Q19 flow solver, 
RRZE Emmy cluster,

10 cores per NUMA domain
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Computational wave settles at the saturation point (sometimes)
DOI: 10.1007/978-3-030-50743-5_20
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https://doi.org/10.1007/978-3-030-50743-5_20








Further questions
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Further questions about desynchronized execution
 Performance of different kernels running concurrently on one ccNUMA

domain?  DOI: 10.1002/cpe.6816

 Decisive parameter: per-kernel 
single-thread memory bandwidth fraction
(“memory pressure”)

http://doi.org/10.1002/cpe.6816
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Further questions about desynchronized execution
 Can we inject a delay to make a program faster?
 Yes we can

 Do we always have to strictly balance the load?
 No, some variation may be good for performance

 Is there a more favorable pattern than compute-communicate-
repeat?
 Yes: memory-bound compute – scalable compute – repeat

 Can the system (application,computer) be described by 
coupled oscillators?
̇𝜃𝜃𝑖𝑖 = 𝜔𝜔𝑖𝑖 + 𝛼𝛼�

𝑗𝑗

sin 𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑖𝑖 ̇𝜃𝜃𝑖𝑖 = 𝜔𝜔𝑖𝑖 + 𝜁𝜁𝑖𝑖(𝑡𝑡) + 𝛼𝛼�
𝑗𝑗

𝑇𝑇𝑖𝑖𝑗𝑗 𝑉𝑉 𝜃𝜃𝑗𝑗 ,𝜃𝜃𝑖𝑖 , 𝜏𝜏𝑖𝑖𝑗𝑗(𝑡𝑡)



Thank You.
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