
Performance Engineering in CSE:

A Bird’s-Eye View

Georg Hager, Jan Laukemann

Erlangen National High Performance Computing Center (NHR@FAU)

Minisymposium MS167

SIAM CSE23, Amsterdam, The Netherlands

2023-03-01

2023-03-01 2SIAM CSE23 | Performance Engineering

Agenda

▪ Performance Engineering process

▪ Tools

▪ Metrics

▪ Patterns

▪ An inspiring example

▪ a.k.a. “The most outrageously expensive way to compute prime numbers”

2023-03-01 3SIAM CSE23 | Performance Engineering

The PE process

Algorithm/Code

Analysis

Application

Benchmarking
HPM performance

profile

Traces/HW metrics
Performance

Model

▪ Identify performance issues/patterns

▪ Develop performance expectation

Optimize

implementation

Change runtime

configuration

Iteratively

Runtime profile

For every hotspot

2023-03-01 4SIAM CSE23 | Performance Engineering

Tools

Algorithm/Code

Analysis

Application

Benchmarking
HPM performance

profile

Traces/HW metricsPerformance Model

▪ Identify performance issues/patterns

▪ Develop performance expectation

Optimize

implementation

Change runtime

configuration

Iteratively

Runtime profile

For every hotspot

Profilers

(hotspot detection)
HPM tools

(HW/SW interaction)

Tracing tools

(timeline exploration)

Modeling tools

(XYZ prediction)

2023-03-01 5SIAM CSE23 | Performance Engineering

Metrics

Algorithm/Code

Analysis

Application

Benchmarking
HPM performance

profile

Traces/HW metricsPerformance Model

▪ Identify performance issues/patterns

▪ Develop performance expectation

Optimize

implementation

Change runtime

configuration

Iteratively

Runtime profile

For every hotspot

Performance /

runtime

Resource utilization

Variability / behavior

Scalability / speedup

2023-03-01 6SIAM CSE23 | Performance Engineering

“Behavior”?

jmax=kmax jmax*kmax = const

L
3

 C
a

c
h

e

3D 7-point stencil

Single core Intel Ice Lake

???

“How does Y change if I change X?”

is an extremely powerful way to look

at performance

▪ Problem size

▪ Domain shape

▪ Domain-process mapping

▪ # cores/threads/processes

▪ Affinity settings

▪ …

2023-03-01 7SIAM CSE23 | Performance Engineering

Performance patterns

Pattern Performance behavior
Metric signature & LIKWID [7]

performance group(s)

Bandwidth saturation
Saturating speedup across cores sharing

a data path

Bandwidth meets BW of suitable

streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)

Good (low) CPI, integral ratio of cycles

to specific instruction count(s)

(FLOPS_*, DATA, CPI)

Inefficient

data

access

Excess data

volume Simple bandwidth performance model too

optimistic

Low BW utilization / Low cache hit

ratio, frequent CL evicts or

replacements (CACHE, DATA, MEM)Latency-bound

access

Micro-architectural anomalies
Significant discrepancy from simple

performance model based on LD/ST and

arithmetic throughput

Relevant events are very hardware-

specific, e.g., memory aliasing stalls,

conflict misses, unaligned LD/ST,

requeue events, WA evasion

False sharing of cache lines
Large discrepancy from performance

model in parallel case, bad scalability
Frequent (remote) CL evicts (CACHE)

Bad ccNUMA page placement
Bad or no scaling across NUMA domains,

performance improves with interleaved

page placement

Unbalanced bandwidth on memory

interfaces / High remote traffic (MEM)

2023-03-01 8SIAM CSE23 | Performance Engineering

Performance patterns

Pattern Performance behavior
Metric signature & LIKWID [7]

performance group(s)

Pipelining issues
In-core throughput far from design limit,

performance insensitive to data set size

(Large) integral ratio of cycles to specific

instruction count(s), bad (high) CPI

(FLOPS_*, DATA, CPI)

Control flow issues See above
High branch rate and branch miss ratio

(BRANCH)

Load imbalance / serial fraction Saturating/sub-linear speedup

Different amount of “work” on the cores

(FLOPS_*); note that instruction count is

not reliable!

Synchronization overhead
Speedup going down as more cores are

added / No speedup with small problem

sizes / Cores busy but low FP performance

Large non-FP instruction count (growing

with number of cores used) / Low CPI

(FLOPS_*, CPI)

Instruction overhead
Low application performance, good scaling

across cores, performance insensitive to

problem size

Low CPI near theoretical limit / Large

non-FP instruction count (constant vs.

number of cores) (FLOPS_*, DATA, CPI)

Code

compo-

sition

Expensive

instructions
Similar to instruction overhead

Many cycles per instruction (CPI) if the

problem is large-latency arithmetic

Ineffective

instructions

Scalar instructions dominating in data-

parallel loops (FLOPS_*, CPI)

A motivating example in PE

The prime number riddle

2023-03-01 10SIAM CSE23 | Performance Engineering

SPEChpc 2021 Cloverleaf performance (519_clvleaf_t)

Lowest order: typical memory-

bound code

▪ Saturation on 1st ccNUMA

domain

▪ linear scaling beyond

However…

▪ No “hard” saturation

▪ Dips at

#processes = prime???

1
s
t
c
c
N

U
M

A
d
o

m
a
in

General shape

 compact pinning

Wait. Prime???

Pure MPI

Intel Ice Lake 2x 36c, SNC on

2023-03-01 11SIAM CSE23 | Performance Engineering

Layer conditions and domain decomposition

3D 7pt stencil

Strong scaling

10003

2023-03-01 12SIAM CSE23 | Performance Engineering

However…

▪ Overall problem size is ~153002

▪ Hotspots show simple 2D stencil patterns

▪ E.g., one advec_mom_kernel loop nest:

15300 × 2 arrays × 2 layers × 8 bytes ≈ 490 kB

▪ … and Cloverleaf cuts the inner dimension anyway 

DO k=y_min,y_max+1
DO j=x_min-1,x_max+2

! Staggered cell mass post advection
node_mass_post(j,k)=0.25_8*(density1(j ,k-1)*post_vol(j ,k-1) &

+density1(j ,k)*post_vol(j ,k) &
+density1(j-1,k-1)*post_vol(j-1,k-1) &
+density1(j-1,k)*post_vol(j-1,k))

node_mass_pre(j,k)=node_mass_post(j,k)-node_flux(j-1,k)+node_flux(j,k)
ENDDO

ENDDO

advec_mom_kernel(), line 222

2023-03-01 13SIAM CSE23 | Performance Engineering

Still… memory traffic?

Memory data traffic at hotspots

shows distinct patterns

▪ Overall drop along 1st and 2nd

ccNUMA domain (> 30%)

▪ More traffic @ prime number of

processes

Enter SpecI2M!

2023-03-01 14SIAM CSE23 | Performance Engineering

Intel SpecI2M – write-allocate evasion

▪ Hot Chips ‘20 Conference:

https://www.hotchips.org/assets/program/conference/day1/HotChips2020_

Server_Processors_Intel_Irma_ICX-CPU-final3.pdf

▪ John McCalpin: https://community.intel.com/t5/Software-Tuning-

Performance/ICX-What-is-SpecI2M-request-and-how-it-differs-from-

RFO/td-p/1204258

https://www.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://community.intel.com/t5/Software-Tuning-Performance/ICX-What-is-SpecI2M-request-and-how-it-differs-from-RFO/td-p/1204258

2023-03-01 15SIAM CSE23 | Performance Engineering

SpecI2M write-allocate evasion

Conditions

▪ Gradually kicks in on the way to

saturation

▪ Explains slow drop in read traffic towards

saturation

▪ Long loops with no significant gaps

(e.g., halo layers)

▪ Explains traffic spikes at prime #procs

2023-03-01 16SIAM CSE23 | Performance Engineering

Cross-check: deactivate SpecI2M

MSR bit disclosed by Intel

under NDA

▪ Prime number pattern gone

▪ Drop along 1st socket gone

▪ General traffic volume in

accordance with analytic model

What about NT stores?

▪ Ask me in private

Thank you.

“If you just dig deep enough, things get juicy”

