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Agenda

▪ Performance Engineering process

▪ Tools

▪ Metrics

▪ Patterns

▪ An inspiring example

▪ a.k.a. “The most outrageously expensive way to compute prime numbers” 
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The PE process
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Tools
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(hotspot detection)
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(XYZ prediction)
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Metrics
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“Behavior”?

jmax=kmax jmax*kmax = const

L
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a
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h
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3D 7-point stencil

Single core Intel Ice Lake

???

“How does Y change if I change X?” 

is an extremely powerful way to look 

at performance

▪ Problem size

▪ Domain shape 

▪ Domain-process mapping

▪ # cores/threads/processes

▪ Affinity settings

▪ …
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Performance patterns

Pattern Performance behavior
Metric signature & LIKWID [7]

performance group(s)

Bandwidth saturation
Saturating speedup across cores sharing 

a data path

Bandwidth meets BW of suitable 

streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)

Good (low) CPI, integral ratio of cycles 

to specific instruction count(s) 

(FLOPS_*, DATA, CPI)

Inefficient

data

access

Excess data

volume Simple bandwidth performance model too 

optimistic

Low BW utilization / Low cache hit 

ratio, frequent CL evicts or 

replacements (CACHE, DATA, MEM)Latency-bound 

access

Micro-architectural anomalies
Significant discrepancy from simple 

performance model based on LD/ST and 

arithmetic throughput

Relevant events are very hardware-

specific, e.g., memory aliasing stalls, 

conflict misses, unaligned LD/ST, 

requeue events, WA evasion

False sharing of cache lines
Large discrepancy from performance 

model in parallel case, bad scalability
Frequent (remote) CL evicts (CACHE)

Bad ccNUMA page placement
Bad or no scaling across NUMA domains, 

performance improves with interleaved 

page placement

Unbalanced bandwidth on memory 

interfaces / High remote traffic (MEM)
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Performance patterns

Pattern Performance behavior
Metric signature & LIKWID [7]

performance group(s)

Pipelining issues
In-core throughput far from design limit, 

performance insensitive to data set size

(Large) integral ratio of cycles to specific 

instruction count(s), bad (high) CPI 

(FLOPS_*, DATA, CPI)

Control flow issues See above
High branch rate and branch miss ratio 

(BRANCH)

Load imbalance / serial fraction Saturating/sub-linear speedup

Different amount of “work” on the cores 

(FLOPS_*); note that instruction count is 

not reliable!

Synchronization overhead
Speedup going down as more cores are 

added / No speedup with small problem 

sizes / Cores busy but low FP performance

Large non-FP instruction count (growing 

with number of cores used) / Low CPI 

(FLOPS_*, CPI)

Instruction overhead
Low application performance, good scaling 

across cores, performance insensitive to 

problem size

Low CPI near theoretical limit / Large 

non-FP instruction count (constant vs. 

number of cores) (FLOPS_*, DATA, CPI)

Code 

compo-

sition

Expensive 

instructions
Similar to instruction overhead

Many cycles per instruction (CPI) if the 

problem is large-latency arithmetic

Ineffective 

instructions

Scalar instructions dominating in data-

parallel loops (FLOPS_*, CPI)



A motivating example in PE

The prime number riddle
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SPEChpc 2021 Cloverleaf performance (519_clvleaf_t)

Lowest order: typical memory-

bound code

▪ Saturation on 1st ccNUMA

domain

▪ linear scaling beyond

However…

▪ No “hard” saturation

▪ Dips at 

#processes = prime???

1
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General shape 

 compact pinning

Wait. Prime???

Pure MPI

Intel Ice Lake 2x 36c, SNC on
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Layer conditions and domain decomposition

3D 7pt stencil

Strong scaling 

10003
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However…

▪ Overall problem size is ~153002

▪ Hotspots show simple 2D stencil patterns

▪ E.g., one advec_mom_kernel loop nest:

15300 × 2 arrays × 2 layers × 8 bytes ≈ 490 kB

▪ … and Cloverleaf cuts the inner dimension anyway 

DO k=y_min,y_max+1
DO j=x_min-1,x_max+2

! Staggered cell mass post advection
node_mass_post(j,k)=0.25_8*(density1(j  ,k-1)*post_vol(j  ,k-1) &

+density1(j  ,k )*post_vol(j  ,k )                   &
+density1(j-1,k-1)*post_vol(j-1,k-1)                   &
+density1(j-1,k )*post_vol(j-1,k ))

node_mass_pre(j,k)=node_mass_post(j,k)-node_flux(j-1,k)+node_flux(j,k)
ENDDO

ENDDO

advec_mom_kernel(), line 222
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Still… memory traffic?

Memory data traffic at hotspots 

shows distinct patterns

▪ Overall drop along 1st and 2nd

ccNUMA domain (> 30%)

▪ More traffic @ prime number of 

processes

Enter SpecI2M!
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Intel SpecI2M – write-allocate evasion

▪ Hot  Chips ‘20 Conference: 

https://www.hotchips.org/assets/program/conference/day1/HotChips2020_

Server_Processors_Intel_Irma_ICX-CPU-final3.pdf

▪ John McCalpin: https://community.intel.com/t5/Software-Tuning-

Performance/ICX-What-is-SpecI2M-request-and-how-it-differs-from-

RFO/td-p/1204258

https://www.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://community.intel.com/t5/Software-Tuning-Performance/ICX-What-is-SpecI2M-request-and-how-it-differs-from-RFO/td-p/1204258
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SpecI2M write-allocate evasion

Conditions

▪ Gradually kicks in on the way to 

saturation

▪ Explains slow drop in read traffic towards 

saturation

▪ Long loops with no significant gaps 

(e.g., halo layers)

▪ Explains traffic spikes at prime #procs
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Cross-check: deactivate SpecI2M

MSR bit disclosed by Intel 

under NDA

▪ Prime number pattern gone

▪ Drop along 1st socket gone

▪ General traffic volume in 

accordance with analytic model

What about NT stores?

▪ Ask me in private



Thank you.

“If you just dig deep enough, things get juicy”


