
Performance Engineering for Sparse Linear Solvers
Half-Day Tutorial at SC25

Christie L. Alappat, Erlangen National High Performance Computing Center

Jonas Thies, TU Delft

Georg Hager, Erlangen National High Performance Computing Center

Hartwig Anzt, TU München

SC25 Performance Engineering for Sparse Linear Solvers 1

Tutorial Agenda

• Brief introduction to node-level computer architecture

• Performance modeling with the Roofline model

• Sparse matrix-vector multiplication (SpMV) performance, sparse-
matrix data formats, and Roofline modeling of SpMV

• The Conjugate Gradient (CG) algorithm

• Preconditioning and preconditioned CG (PCG)

• Accelerating matrix power kernels (MPK) by cache blocking

• Optional: distributed-memory SpMV and MPK cache blocking

SC25 Performance Engineering for Sparse Linear Solvers 2

HPC Node Architecture

CPUs

GPUs

SC25 Performance Engineering for Sparse Linear Solvers 3

SC25

Multi-core today: Intel Xeon Sapphire Rapids (2023)

▪ Xeon “Sapphire Rapids” (Platinum/Gold/Silver/Bronze):
Up to 60 cores running at 1.7+ GHz
(+ “Turbo Mode” 4.8 GHz),

▪ “Intel 7” process / up to 350 W

▪ Multi-die package (4 chips)

▪ Clock frequency:
flexible☺

https://www.techpowerup.com/292204/intel-sapphire-rapids-xeon-4-tile-mcm-annotated

Performance Engineering for Sparse Linear Solvers 4

SC25 6Performance Engineering for Sparse Linear Solvers

A more current example – lots of “topology”!

PCIe

accelerator

CPU 1

CPU 0

hyper-threadcoredie

smallest possible ccNUMA
domain

Nvidia H100 “Hopper” SXM5 specs

Architecture

▪ 80 B Transistors

▪ ~ 1.8 GHz clock speed

▪ ~ 144 “SM” units

▪ 128 SP “cores” each (FMA)

▪ 64 DP “cores” each (FMA)

▪ 4 “Tensor Cores” each

▪ 2:1 SP:DP

performance

▪ ~ 34 TFlop/s DP peak (FP64)

▪ 50 MiB L2 Cache

▪ 80 GB HBM3

▪ MemBW ~ 3300 GB/s (theoretical)

▪ MemBW ~ 3000 GB/s (measured)

© Nvidia

SC25 Performance Engineering for Sparse Linear Solvers 7

SC25 8Performance Engineering for Sparse Linear Solvers

Threads, warps, grids on NVIDIA GPUs

▪ Threads are organized in
warps (32 threads)

▪ Warps make up a block

▪ A block executes on one
“core” (SM)

▪ Scheduling happens
automatically

▪ Developer must map thread
IDs to “work items”
(iterations)

▪ Threads in a warp should
access consecutive memory
addresses

The Roofline Model

Bottleneck-based thinking

Simple models for single loops

Multiple loops

SC25 Performance Engineering for Sparse Linear Solvers 9

Structure of typical solver code

C
o

m
p

u
te

S
Y

N
C

C
o

m
p

u
te

C
o
m

p
u

te

C
o
m

p
u

te

S
Y

N
C

C
o

m
p

u
te

S
Y

N
C

C
o

m
p

u
te

C
o
m

p
u

te

C
o
m

p
u

te

S
Y

N
C

time

parallel_for(i=0..N) { // N>>1

update(data);

}

“Steady state”
▪ Repetitive

▪ Negligible startup/wind-down

overhead

Runtime model: 𝑇 = 𝑓($STUFF,$HARDWARE)

SC25

iterate

Performance Engineering for Sparse Linear Solvers 10

A simple two-bottleneck model of loop code
execution

SC25 Performance Engineering for Sparse Linear Solvers 11

Simplistic view of the hardware:

! may be multiple levels

do i = 1,<sufficient>

<complicated stuff doing

N flops causing

V bytes of data transfer>

enddo

Execution units

max. performance

𝑷𝒑𝒆𝒂𝒌

Data source/sink

Data path, bandwidth
𝒃𝑺
→ Unit: byte/s

Simplistic view of the software:

Computational intensity 𝑰 =
𝑵

𝑽

→ Unit: flop/byte

Which takes longer?
• Data transfer
• Work execution

Predicting the (minimum) runtime of a loop

Two bottlenecks:

#pragma omp parallel for

for(i=0; i<107; ++i)

a[i] = a[i] + s * c[i];

8-core CPU

(3 GHz Intel Sandy Bridge)

𝑅𝐵𝑊
𝑚𝑎𝑥 = 40

Gbyte

s

𝑊𝐵𝑊 = 3 × 8 × 107 bytes

𝑅𝑓𝑙𝑜𝑝𝑠
𝑚𝑎𝑥 = 192

Gflops

s

𝑊𝑓𝑙𝑜𝑝𝑠 = 2 × 107 flops

𝑇𝑓𝑙𝑜𝑝𝑠 =
2 × 107 flops

192
Gflops
s

= 104 𝜇𝑠 𝑇𝐵𝑊 =
2.4 × 108 bytes

40
Gbyte
s

= 6.0 ms

SC25 Performance Engineering for Sparse Linear Solvers 12

Resources
needed (code

properties)

Resources
rates provided
(machine
properties)

𝑇min = max 𝑇𝑓𝑙𝑜𝑝𝑠, 𝑇𝐵𝑊
= 6 ms

Full-overlap assumption:

From time to performance

SC25

𝑃𝑢𝑝𝑝𝑒𝑟 =
𝑊𝑓𝑙𝑜𝑝𝑠

max(𝑇𝑓𝑙𝑜𝑝𝑠,𝑇𝐵𝑊)
=

𝑊𝑓𝑙𝑜𝑝𝑠

max
𝑊𝑓𝑙𝑜𝑝𝑠

𝑅𝑓𝑙𝑜𝑝𝑠
,
𝑊𝐵𝑊
𝑅𝐵𝑊

=

min 𝑅𝑓𝑙𝑜𝑝𝑠, 𝑅𝐵𝑊 ×
𝑊𝑓𝑙𝑜𝑝𝑠

𝑊𝐵𝑊

Application model:
Computational

intensity [flop/byte]

Machine model:
Memory bandwidth

[byte/s]

Machine model:
Peak performance

[flop/s]

Performance Engineering for Sparse Linear Solvers 13

“Roofline”!?

Common nomenclature:

𝑅𝑓𝑙𝑜𝑝𝑠 → 𝑃𝑝𝑒𝑎𝑘 peak performance

𝑅𝐵𝑊 → 𝑏𝑆 memory bandwidth
𝑊𝑓𝑙𝑜𝑝𝑠

𝑊𝐵𝑊
→ 𝐼 computational intensity

SC25

Intensity

P
e
rf

o
rm

a
n
c
e

Ppeak

𝑃𝑢𝑝𝑝𝑒𝑟 = min 𝑃𝑝𝑒𝑎𝑘 , 𝐼 × 𝑏𝑆

R.W. Hockney and I.J. Curington:

f1/2: A parameter to characterize memory and communication bottlenecks.

Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

S. Williams: Auto-tuning Performance on Multicore Computers.

UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

compute
bound

memory
bound

Threshold:
≈ 10-15 F/B for current

Server CPUs/GPUs

Performance Engineering for Sparse Linear Solvers 14

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

SC25

Hands-On:

Exploring node topology and bandwidth

Performance Engineering for Sparse Linear Solvers 16

Diagnostic modeling

Two cluster jobs…

SC25

Intensity

P
e
rf

o
rm

a
n
c
e

Pmax

𝑃𝑚𝑒𝑎𝑠

𝑁𝑚𝑒𝑎𝑠

𝑉𝑚𝑒𝑎𝑠

Performance Engineering for Sparse Linear Solvers 19

Roofline: Simple Examples

Dense linear algebra

Sparse linear algebra

Simple solvers: CG

Hartwig Anzt, hartwig.anzt@kit.eduSC25 Performance Engineering for Sparse Linear Solvers 23

Dense linear algebra

Roofline thinking:

What is the computational intensity?

SC25

for(i=0; i<N; ++i)
s += a[i]*b[i];

for(i=0; i<N; ++i)
a[i] = a[i]+s*x[i];

for(r=0; r<NR; ++r)
for(c=0; c<NC; ++c)

y[r] += A[r*NC+c]*x[c];

dot product (BLAS-1)

dense MVM (BLAS-2)
dot-product style

daxpy (BLAS-1)

for(k=0; k<NK;++k)
for(l=0; l<NL; ++l)

for(m=0; m<NM; ++m)
y[k*NL+l] +=

A[k*NM+m]*B[l*NM+m];

dense MMM (BLAS-3)

Performance Engineering for Sparse Linear Solvers 24

Dense MVM

• One DP read from memory for each matrix entry

• x[] and y[] are read and updated from cache after 1st read

• → 8 byte and 2 flops per iteration

Computational intensity 𝐼 =
2 𝑓𝑙𝑜𝑝

8 𝑏𝑦𝑡𝑒
= 0.25

𝑓𝑙𝑜𝑝

𝑏𝑦𝑡𝑒

SC25

for(r=0; r<NR; ++r)
for(c=0; c<NC; ++c)

y[r] += A[r*NC+c]*x[c];

Performance Engineering for Sparse Linear Solvers 27

Dense MMM?

• Blocking/unrolling techniques can increase intensity beyond the
Roofline knee

→ peak performance achievable

SC25

for(k=0; k<NK;++k)
for(l=0; l<NL; ++l)

for(m=0; m<NM; ++m)
y[k*NL+l] +=

A[k*NM+m]*B[l*NM+m];

for(k=0; k<NK; k+=2)
for(l=0; l<NL; l+=2)

for(m=0; m<NM; ++m)
y[k*NL+l] += A[k*NM+m]*B[l*NM+m];
y[(k+1)*NL+l] += A[(k+1)*NM+m]*B[l*NM+m];
y[k*NL+(l+1)] += A[k*NM+m]*B[(l+1)*NM+m];
y[(k+1)*NL+(l+1)] += A[(k+1)*NM+m]*B[(l+1)*NM+m];

Performance Engineering for Sparse Linear Solvers 28

Sparse Matrices and SpMV

Sparse Matrix Formats

Sparse Matrix Vector Product Parallelization

SC25 Performance Engineering for Sparse Linear Solvers 29

Matrix Vector Multiplication

• Central building block in many complex algorithms:
• Orthogonalization, power iteration in Page Rank, Power flow of a system …

• Before we turn to sparse matrices, we recall how we store & handle dense matrices on
parallel processors (i.e. GPUs)

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 30

__global__ void sgemv_rowmajor(…)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for(int col=0; col<n; col++){
sum += m[row*n + col] * x[col];

}
y[row] = alpha * sum;

}
}

__global__ void sgemv_colmajor(…)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for(int col=0; col<n; col++){
sum += m[row + n*col] * x[col];

}
y[row] = alpha * sum;

}
}

Matrix Vector Multiplication Input Output

Row-major

Col-major

Parallel threads

SC25 Performance Engineering for Sparse Linear Solvers 31

__global__ void sgemv_rowmajor(…)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for(int col=0; col<n; col++){
sum += m[row*n + col] * x[col];

}
y[row] = alpha * sum;

}
}

__global__ void sgemv_colmajor(…)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for(int col=0; col<n; col++){
sum += m[row + n*col] * x[col];

}
y[row] = alpha * sum;

}
}

Matrix Vector Multiplication Input Output

Row-major

Col-major

Parallel threads

First read
Second read
Third read
…

SC25 Performance Engineering for Sparse Linear Solvers 32

__global__ void sgemv_rowmajor(…)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for(int col=0; col<n; col++){
sum += m[row*n + col] * x[col];

}
y[row] = alpha * sum;

}
}

__global__ void sgemv_colmajor(…)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for(int col=0; col<n; col++){
sum += m[row + n*col] * x[col];

}
y[row] = alpha * sum;

}
}

Matrix Vector Multiplication Input Output

Row-major

Col-major

Parallel threads

First read
Second read
Third read
…

G
FL

O
P/

s

SC25 Performance Engineering for Sparse Linear Solvers 33

Sparse Matrix Vector Multiplication

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 34

Value

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.

Sparse Matrix Vector Multiplication Input Output

SC25 Performance Engineering for Sparse Linear Solvers 35

Value

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

Column-index

Row-index

Memory footprint of COO format:
nz(val) + 2*nz(int)

COO format Input Output

SC25 Performance Engineering for Sparse Linear Solvers 36

Value

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

Column-index

Row-index

Memory footprint of COO format:
nz(val) + 2*nz(int)

COO format

Hands-on Exercise: Convert this matrix into COO format:

Compute the memory requirement (# vals + # int)

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 37

Value

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

Column-index

Row-index

Memory footprint of COO format:
nz(val) + 2*nz(int)

COO format

Hands-on Exercise: Convert this matrix into COO format:

Compute the memory requirement (# vals + # int)
17 vals + 34 int

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 38

Split nonzero elements into chunks and parallelize across chunks.
• Partial sums need synchronization / atomics to avoid write conflicts.
• Non-coalesced memory access (because row-major).

T1
T2
T3
T4
T5
T6

=*

Column-index

Value

Row-index

COO SpMV Input Output

SC25 Performance Engineering for Sparse Linear Solvers 39

Value

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

Column-index

Memory footprint of COO format:
nz(val) + 2*nz(int)

CSR (==CRS) format Input Output

SC25 Performance Engineering for Sparse Linear Solvers 40

Value

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

Memory footprint of CSR format:
nz(val) + nz(int) + (n+1) (int)

Column-index

Points to the first element in each row

Number of nonzero elements

Memory footprint of COO format:
nz(val) + 2*nz(int)

CSR format Input Output

SC25 Performance Engineering for Sparse Linear Solvers 41

Value

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

Memory footprint of CSR format:
nz(val) + nz(int) + (n+1) (int)

Column-index

Points to the first element in each row

Number of nonzero elements

Memory footprint of COO format:
nz(val) + 2*nz(int)

CSR format Input Output

SC25 Performance Engineering for Sparse Linear Solvers 42

Value

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

Memory footprint of CSR format:
nz(val) + nz(int) + (n+1) (int)

Column-index

Points to the first element in each row

Number of nonzero elements

Memory footprint of COO format:
nz(val) + 2*nz(int)

CSR format

Hands-on Exercise: Convert this matrix into CSR format:

Compute the memory requirement (# vals + # int)

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 43

Value

• Matrix contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

Memory footprint of CSR format:
nz(val) + nz(int) + (n+1) (int)

Column-index

Points to the first element in each row

Number of nonzero elements

Memory footprint of COO format:
nz(val) + 2*nz(int)

CSR format

Hands-on Exercise: Convert this matrix into CSR format:

Compute the memory requirement (# vals + # int)
17 vals + 24 int

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 44

CSR SpMV

Column-index

Value

How to parallelize this?

Row-pointer

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 45

• Parallelize by rows:
• Every “thread” handles the computation of one sum in local memory.

T1
T2
T3
T4
T5
T6

T1
T2
T3
T4
T5
T6

=*

Column-index

Value

CSR SpMV

Row-pointer

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 46

• Parallelize by rows:
• Every “thread” handles the computation of one sum in local memory.
• Significant workload imbalance!
• Can not store the matrix in Col-Major format for coalesced access!

T1
T2
T3
T4
T5
T6

T1
T2
T3
T4
T5
T6

=*

Column-index

Value

CSR SpMV

Row-pointer

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 47

for(row=0; row<n; row++)

{

sum = 0.0;

for(j=rowptr[row]; j<rowptr[row+1]; j++)

sum += values[j] * x[colind[j]];

y[row] = alpha * sum;

}

CSR SpMV

Storing values and columns in row-major.
-> On GPUs: non-coalesced memory access

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 48

for(row=0; row<n; row++)

{

sum = 0.0;

for(j=rowptr[row]; j<rowptr[row+1]; j++)

sum += values[j] * x[colind[j]];

y[row] = alpha * sum;

}

CSR SpMV

Storing values and columns in row-major.
-> On GPUs: non-coalesced memory access

Can we use column-major?
-> Only if all rows contain the same number of nonzero elements

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 49

for(row=0; row<n; row++)

{

sum = 0.0;

for(j=rowptr[row]; j<rowptr[row+1]; j++)

sum += values[j] * x[colind[j]];

y[row] = alpha * sum;

}

CSR SpMV

Storing values and columns in row-major.
-> On GPUs: non-coalesced memory access

Can we use column-major?
-> Only if all rows contain the same number of nonzero elements

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 50

ELL Format Input Output

SC25 Performance Engineering for Sparse Linear Solvers 51

ELL Format Input Output

`Left-align nonzero elements’

SC25 Performance Engineering for Sparse Linear Solvers 52

ELL Format Input Output

`Left-align nonzero elements’

Pad rows to uniform length

Memory volume:
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

SC25 Performance Engineering for Sparse Linear Solvers 53

ELL Format Input Output

Pad rows to uniform length

Memory volume:
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

SC25 Performance Engineering for Sparse Linear Solvers 54

ELL SpMV Input Output

T1
T2
T3
T4
T5
T6

Memory volume:
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Pad rows to uniform length

SC25 Performance Engineering for Sparse Linear Solvers 55

ELL SpMV Input Output

T1
T2
T3
T4
T5
T6

Memory volume:
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Coalesced access

Pad rows to uniform length

SC25 Performance Engineering for Sparse Linear Solvers 56

ELL SpMV Input Output

T1
T2
T3
T4
T5
T6

Memory volume:
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Coalesced access
Can be wasteful (overhead)

Pad rows to uniform length

SC25 Performance Engineering for Sparse Linear Solvers 57

ELL SpMV Input Output

T1
T2
T3
T4
T5
T6

Memory volume:
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Coalesced access
Can be wasteful (overhead)

Pad rows to uniform length

Hands-on Exercise: Convert this matrix into ELL format:

Compute the memory requirement (# vals + # int)

SC25 Performance Engineering for Sparse Linear Solvers 58

ELL SpMV Input Output

T1
T2
T3
T4
T5
T6

Memory volume:
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Coalesced access
Can be wasteful (overhead)

Pad rows to uniform length

Hands-on Exercise: Convert this matrix into ELL format:

Compute the memory requirement (# vals + # int)
36 vals + 36 int

SC25 Performance Engineering for Sparse Linear Solvers 59

• Partition the matrix into blocks & use ELL for the distinct blocks.
• Reduce overhead of ELL.
• Can still store col-major.

Sliced-ELL Format Input Output

SC25 Performance Engineering for Sparse Linear Solvers 60

• Partition the matrix into blocks & use ELL for the distinct blocks.
• Reduce overhead of ELL.
• Can still store col-major.

Block0

Block1

Block2

Sliced-ELL Format Input Output

SC25 Performance Engineering for Sparse Linear Solvers 61

• Partition the matrix into blocks & use ELL for the distinct blocks.
• Reduce overhead of ELL.
• Can still store col-major.

Block0

Block1

Block2

Sliced-ELL Format Input Output

SC25 Performance Engineering for Sparse Linear Solvers 62

• Partition the matrix into blocks & use ELL for the distinct blocks.
• Reduce overhead of ELL.
• Can still store col-major.
• Need for a row pointer.

sliced-ELL format :

Slice matrix into blocks, store blocks in
ELL format with offset-pointer.

Block0

Block1

Block2

Sliced-ELL Format Input Output

rowptr = [0 10 14 16]
SC25 Performance Engineering for Sparse Linear Solvers 63

Sliced-ELL GeMV

Hands-on Exercise: Convert this matrix into Sliced-ELL format (SELL-2):

Compute the memory requirement (# vals + # int)

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 64

Sliced-ELL GeMV

Hands-on Exercise: Convert this matrix into Sliced-ELL format (SELL-2):

Rowptr: 0 6 18 26

Compute the memory requirement (# vals + # int)
26 vals + 26 + 4 int

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 65

Sliced-ELL GeMV Input Output

• How can we optimize this? Minimize the overhead? What is the overhead dependent on?
• Bring rows with similar number of nonzero elements into the same block.
• Sort rows by “length” and reorder the matrix, then convert to Sliced-ELL

• What happens for block-size 1?
• What happens for block size n (matrix size)?

SC25 Performance Engineering for Sparse Linear Solvers 66

SpMV Formats and Kernels

“Different kernels optimal for different problems”

COO
• can compensate workload imbalance for irregular patterns
• Efficient for MIMD processing
• Strong support for atomics needed
CSR
• small memory footprint
• Needs some logic for row-parallel processing
• Efficient for MIMD processing

ELL
• Efficient for balanced matrices
• Enables col-major storage
• Efficient for SIMD processing

SELL-c
• Enables col-major storage
• Tunable between CSR and ELL
…

Input Output

SC25 Performance Engineering for Sparse Linear Solvers 67

SpMV (CSR)
Roofline
Optimistic intensity:

SC25

for (int row = 0; row < num_rows; ++row) {
double sum = 0.0;
for (int k = row_ptrs[row]; k < row_ptrs[row + 1]; ++k)
sum += mat_values[k] * b[col_idxs[k]];

x[row] += sum;
}

𝐼𝑚𝑎𝑥 =
2 𝑁𝑛𝑧

12 𝑁𝑛𝑧 + 20 𝑁𝑟 + 8 𝑁𝑐

F

B

= + •
=

1

6+10/𝑁𝑛𝑧𝑟+ 4/𝑁𝑛𝑧𝑐

F

B

=
1

6+10/𝑁𝑛𝑧𝑟+ 4/𝑁𝑛𝑧𝑟

F

B

𝑁𝑛𝑧𝑟≫10 1

6

F

B

sq
u

are m
atrix

Performance Engineering for Sparse Linear Solvers 68

Roofline “failure” with SpMV

Reasons for performance not attaining the limit

1. Intensity lower than the minimum
• More RHS traffic than the optimistic limit (

4

𝑁𝑛𝑧𝑟
B/F)

2. “Slow code”
• “invisible” performance ceiling due to inefficient instructions or inefficient

execution

3. Load imbalance
• A single process/thread cannot saturate the memory bandwidth

4. Erratic memory access patterns for RHS
• Latency dominates

SC25

Intensity

P
e
rf

o
rm

a
n
c
e

Pmax

𝑃𝑚𝑒𝑎𝑠

𝑁𝑚𝑒𝑎𝑠

𝑉𝑚𝑒𝑎𝑠

Performance Engineering for Sparse Linear Solvers 69

Experiences with SpMV on GPUs

Looking at ~3,000 test matrices from Suite Sparse Matrix Collection

SC25

Absolute CSR limit for
𝑏𝑆 = 3 TB/s

Performance Engineering for Sparse Linear Solvers 70

SC25

Hands-On:

SpMV benchmarking

Performance Engineering for Sparse Linear Solvers 72

Solving Sparse Linear Systems

Why we often don’t use direct solvers

Characteristics and optimization of iterative solvers

Preconditioning using Matrix Polynomials

Jonas Thies (j.thies@tudelft.nl)

Can we use direct solvers for solving sparse problems?

SC25 Performance Engineering for Sparse Linear Solvers 74

Scalar or block-LU?

Are zeros preserved in the factorization?

Can we store the fill-in?

Can we use direct solvers for solving sparse problems?

SC25 Performance Engineering for Sparse Linear Solvers 75

Scalar or block-LU?

Are zeros preserved in the factorization?

Can we store the fill-in?

LU

Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 76

Generate a sequence of solution approximations with increasing approximation quality.

𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯

Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 77

Generate a sequence of solution approximations with increasing approximation quality.

Relaxations

• Base on matrix splitting

• Jacobi relaxation:

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯

Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 78

Generate a sequence of solution approximations with increasing approximation quality.

Relaxations

• Base on matrix splitting

• Jacobi relaxation:

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Krylov Subspace Methods

• Iteratively grow Krylov subspace

• Approximate solution

in Krylov Subspace

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐾𝑖 𝐴, 𝑟 = 𝑠𝑝𝑎𝑛 𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑖−1𝑟

𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ℝ𝑛

𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯

Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 79

Generate a sequence of solution approximations with increasing approximation quality.

Relaxations

• Base on matrix splitting

• Jacobi relaxation:

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Krylov Subspace Methods

• Iteratively grow Krylov subspace

• Approximate solution

in Krylov Subspace

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Multigrid Methods

• Recursively project problem to

coarser grid and solve on coarser

grid

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐾𝑖 𝐴, 𝑟 = 𝑠𝑝𝑎𝑛 𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑖−1𝑟

𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ℝ𝑛

𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯

𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯

𝐾𝑖 𝐴, 𝑟 = 𝑠𝑝𝑎𝑛 𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑖−1𝑟

𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ℝ𝑛

Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 80

Generate a sequence of solution approximations with increasing approximation quality.

Relaxations

• Base on matrix splitting

• Jacobi relaxation:

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Krylov Subspace Methods

• Iteratively grow Krylov subspace

• Approximate solution

in Krylov Subspace

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Multigrid Methods

• Recursively project problem to

coarser grid and solve on coarser

grid

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Example: Conjugate Gradients (CG)

Krylov Subspace Methods

• Iteratively grow Krylov subspace

• Approximate solution

in Krylov Subspace

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Optimal Krylov solver for symmetric and positive definite (SPD)

matrices

Requires storing only four additional vectors

Preconditioning Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 82

Transform linear problem by multiplying both sides

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏

Preconditioning Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 83

Transform linear problem by multiplying both sides

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

Iterative solver as preconditioner

• Multigrid

• Jacobi

• Block-Jacobi

• Sparse Approximate Inverses

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏

𝐷−1𝐴𝑥 = 𝐷−1𝑏

Preconditioning Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 84

Transform linear problem by multiplying both sides

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

Iterative solver as preconditioner

• Multigrid

• Jacobi

• Block-Jacobi

• Sparse Approximate Inverses

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Incomplete Factorizations

• Compute LU factorization with

restricted fill-in

• Replace triangular solver with

iteratively solving factors

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏

𝐷−1𝐴𝑥 = 𝐷−1𝑏

𝐿 ⋅ 𝑦 = 𝑏 𝑈 ⋅ 𝑥 = 𝑦

Preconditioning Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 85

Transform linear problem by multiplying both sides

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

Iterative solver as preconditioner

• Multigrid

• Jacobi

• Block-Jacobi

• Sparse Approximate Inverses

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Incomplete Factorizations

• Compute LU factorization with

restricted fill-in

• Replace triangular solver with

iteratively solving factors

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Polynomial preconditioners

• Choose

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏

𝐷−1𝐴𝑥 = 𝐷−1𝑏

𝐿 ⋅ 𝑦 = 𝑏 𝑈 ⋅ 𝑥 = 𝑦

𝐴 = 𝑀 − 𝑁

𝑃 = ෍

𝑖=0

𝑝−1

𝐼 − 𝑀−1𝐴 𝑖 𝑀−1

𝑃 = ෍

𝑖=0

𝑝−1

𝐼 − 𝑀−1𝐴 𝑖 𝑀−1

Preconditioning Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 86

Transform linear problem by multiplying both sides

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

Iterative solver as preconditioner

• Multigrid

• Jacobi

• Block-Jacobi

• Sparse Approximate Inverses

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Incomplete Factorizations

• Compute LU factorization with

restricted fill-in

• Replace triangular solver with

iteratively solving factors

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Polynomial preconditioners

• Choose

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏

𝐷−1𝐴𝑥 = 𝐷−1𝑏

𝐿 ⋅ 𝑦 = 𝑏 𝑈 ⋅ 𝑥 = 𝑦

𝐴 = 𝑀 − 𝑁

Optimizing Iterative Solvers & Preconditioners

SC25 Performance Engineering for Sparse Linear Solvers 87

1. Optimizing the matrix vector product as common building block

• Optimization of sparse data format and processing scheme

Optimizing Iterative Solvers & Preconditioners

SC25 Performance Engineering for Sparse Linear Solvers 88

1. Optimizing the matrix vector product as common building block

• Optimization of sparse data format and processing scheme

2. Cache-Aware implementation

• Merging of Operations into super-kernels to reduce the memory access

BiCGStab Krylov solver (van der Vorst, 1992)

Optimizing Iterative Solvers & Preconditioners

SC25 Performance Engineering for Sparse Linear Solvers 89

1. Optimizing the matrix vector product as common building block

• Optimization of sparse data format and processing scheme

2. Cache-Aware implementation

• Merging of Operations into super-kernels to reduce the memory access

3. Replace memory access with additional computations

• Mixed Precision algorithms using low precision in parts of the computations

• Matrix Powers Kernel and cache blocking
high precision

low precision

SC25

Hands-On:

Conjugate-Gradient Solver

Performance Engineering for Sparse Linear Solvers 90

Cache Blocking for the Matrix Power Kernel

SC25 Performance Engineering for Sparse Linear Solvers 91

Motivation – Sparse Matrix Vector Multiplication

▪ Easy to parallelize but sparse irregular data structures / accesses

▪ SpMV Performance → Strongly Memory Bound (high code balance)

= + •

C(:) C(:) A(:,:) B(:)

SC25 Performance Engineering for Sparse Linear Solvers 92

SC25

Motivation – Matrix power kernel (MPK)

for k=1:p; do

y[k] = SpMV(A, y[k-1])

done

y[0] y[1] y[2] y[3]

𝐴2𝑥 𝐴3𝑥𝐴𝑥𝑥

SpMV SpMV SpMV

▪ Calculate: 𝑦 = 𝐴𝑝𝑥

▪ Repeatedly perform back to back SpMVs

Same matrix 𝐴 loaded 𝑝 times from main memory!!!

How to cache the matrix 𝐴 across the matrix power calculation?

Performance Engineering for Sparse Linear Solvers 93

4321 …5 64321 …5 6y = 𝐴3𝑥

4321 …5 64321 …5 6𝑦1 = 𝐴 𝑥

4321 …5 64321 …5 6𝑦2 = 𝐴2𝑥

Matrix power – Traditional approach vs. Cache Blocking

SC25

Calculate 𝑦 = 𝐴3𝑥

RACE approachTRAD approach

Matrix accessed 3 times from memory

•= •=

Matrix accessed 1 time from memory

How to do that in general for sparse matrices?
Performance Engineering for Sparse Linear Solvers 94

SC25

SpMV – Graph Traversal – RACE

Performance Engineering for Sparse Linear Solvers 95

SC25

Sample matrix and its graph representation

Symmetric Matrix Undirected Graph

𝒞 𝑖 = 1 ≤ 𝑗 ≤ 𝑁 ∶ 𝐴𝑖,𝑗 ≠ 0

∀ 𝑖

𝒞(10)

𝒩 𝑢 = 𝑣 ∈ 𝒱 𝒢 : 𝑢, 𝑣 ∈ ℰ 𝐺

∀ 𝑢

10 11

18

9

2

17

3

𝒩(10)

Performance Engineering for Sparse Linear Solvers 96

Sample matrix and its graph representation

Symmetric Matrix Undirected Graph

SC25 Performance Engineering for Sparse Linear Solvers 97

RACE

144321 15…

levels

SC25 Performance Engineering for Sparse Linear Solvers 98

RACE

14421 15…

Levels (𝐿)

2 4

SC25

Key property

𝒩 𝐿 𝑖 = {𝐿 𝑖 − 1 , 𝐿 𝑖 , 𝐿 𝑖 + 1 }

𝐴𝑝𝑥 computations on 𝐿(𝑖) will require 𝐴𝑝−1𝑥
to be complete on 𝐿 𝑖 − 1 , 𝐿 𝑖 , 𝐿 𝑖 + 1

Neighbors localized ➔ dependencies localized

33

Performance Engineering for Sparse Linear Solvers 99

RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x

Po
w

er
s

No cache blocking!

Performance Engineering for Sparse Linear Solvers 100

RACE – Level traversal and matrix powers

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

Do not pollute the cache→ reuse all loaded elements

When updating level 1, indirect reads also go to level 2

SC25

Levels

M
at

ri
x

Po
w

er
s

Performance Engineering for Sparse Linear Solvers 101

RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

When updating level 2, indirect reads also go to levels 1 and 3

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x

Po
w

er
s

Performance Engineering for Sparse Linear Solvers 102

RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x

Po
w

er
s

Performance Engineering for Sparse Linear Solvers 103

RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x

Po
w

er
s

Performance Engineering for Sparse Linear Solvers 104

RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x

Po
w

er
s

Performance Engineering for Sparse Linear Solvers 105

RACE: MPK implementation idea

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

SC25

p_start=1

p_end=3

Power 2 computation on
level 5

Performance Engineering for Sparse Linear Solvers 106

RACE – Input parameters and its influence

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

SC25

Levels

M
at

ri
x

Po
w

er
s

𝑝 + 1 × 𝑁𝑛𝑧 𝐿 × 12 bytes < 𝐶

𝑁𝑛𝑧 𝐿 − avg. non-zeros in a level
𝐶 − cache size

A is loaded only once if

Performance Engineering for Sparse Linear Solvers 107

Intel Xeon Platinum
8368 (Ice Lake)
• 38 cores
• 104 MB cache

(L2+L3)

SC25

Power value with
maximum
performance.

Performance Engineering for Sparse Linear Solvers 108

Matrix power kernel: Performance – Intel Ice Lake

0

0,5

1

1,5

2

Avg. Speedup

RACE Baseline

SC25 Performance Engineering for Sparse Linear Solvers 109

Matrix power kernel: Performance – Intel Ice Lake
Intel Xeon Platinum
8368 (Ice Lake)
• 38 cores
• 104 MB cache

(L2+L3)

0

0,5

1

1,5

2

2,5

3

3,5

4

Avg. Speedup

RACE Baseline

AMD EPYC 7662
• 64 cores
• 288 MB cache

(L2+L3)

SC25

Matrix power kernel: Performance – AMD Rome

Performance Engineering for Sparse Linear Solvers 110

SC25

RACE - summary

▪ Inner kernel: OpenMP parallel standard SpMV routine

▪ Overhead: BFS & Set up of data structures (approx. ≤ 50 SpMVs)

▪ Parameters: Power (pm), Available Cache Size, Max. recursion depth

▪ Cache size→max. polynomial degree (pm)
▪ Larger caches→ larger pm→ better performance

▪ Polynomial degree higher than pm→ Computation in chunks of pm

▪ No loss of accuracy!

Performance Engineering for Sparse Linear Solvers 111

SC25

RACE – MPK applications

▪ Exponential Integrators → Polynomial approximations

▪ s-step Krylov methods (CA-GMRES)

▪ Polynomial preconditioning

▪ Algebraic Multigrid smoothers

Performance Engineering for Sparse Linear Solvers 112

https://doi.org/10.1177/10943420241283828

https://doi.org/10.1177/10943420241283828

SC25

Hands-On:

MPK with RACE

Performance Engineering for Sparse Linear Solvers 113

SC25

include <RACE/interface.h>

RACE::dist k = RACE::POWER;
Nt = omp_get_num_threads();
RACE::Interface race (Nr, Nt, k, rowPtr, col);

//power value; here 4
int pm = 4 ;
//cache size in bytes; here 30 MB
double C = 30*1024*1024;
//perform pre-processing, find levels
race.RACEColor(pm, C);

int *perm, * invPerm , permLen=Nr;
race.getPerm(&perm, &permLen) ;
race.getInvPerm(&invPerm, &permLen) ;
//permute matrix and vector data structures
permute (perm, invPerm) ;

Using RACE struct functionArg
{
//user-defined struct for input and output
//arguments of the call-back function
int Nr;
. . .

};

//user-defined call-back function
void foo(int row_s, int row_e, int pow, void * voidArg)
{
functionArg * arg = (functionArg *) voidArg;
. . .

}

functionArg* args = new functionArg;
//fill args
args->Nr = 1000;
. . .

void* voidArgs = (void*) args;
int foo_id = race.registerFunction(&foo, voidArgs, pm);
race.executeFunction(foo_id);

Pre-processing Processing

Performance Engineering for Sparse Linear Solvers 114

SC25

Neumann polynomial apply

𝑤 = 𝐼 − 𝐿 𝑘𝐴 𝐼 − 𝑈 𝑘𝑣

𝑡1 = 𝐼 − 𝑈 𝑘𝑣

𝑡2 = 𝐴𝑡1

𝑤 = 𝐼 − 𝐿 𝑘𝑡2

Cache blocking

Cache blocking

Can we do better?

Performance Engineering for Sparse Linear Solvers 115

SC25

Neumann polynomial apply

𝑤 = 𝐼 − 𝐿 𝑘𝐴 𝐼 − 𝑈 𝑘𝑣

𝑡1 = 𝐼 − 𝑈 𝑘𝑣

𝑡2 = 𝐴𝑡1 = 𝐿 + 𝑈 𝑡1

𝑤 = 𝐼 − 𝐿 𝑘𝑡2

Cache blocking

Total power = 2𝑘 + 1

Performance Engineering for Sparse Linear Solvers 116

SC25

0

5

10

15

20

25

30

Baseline RACE

2504 iterations 1268 iterations 1000 iterations

0

5

10

15

20

25

30

Baseline RACE

Time to solve Laplace2000x2000 to 1e-3 tolerance on 1 NUMA domain (18c) of Intel Ice lake (Fritz)

0

5

10

15

20

25

30

Baseline

Ti
m

e
(s

)

k=0 k=1 k=2

Solve time

Init time

Solution is random
array with seed=1

Performance Engineering for Sparse Linear Solvers 117

SC25

0

5

10

15

20

25

30

Baseline RACE

2504 iterations 1268 iterations 1000 iterations

0

5

10

15

20

25

30

Baseline RACE

Time to solve Laplace2000x2000 to 1e-3 tolerance on 1 NUMA domain (18c) of Intel Ice lake (Fritz)

0

5

10

15

20

25

30

Baseline

Ti
m

e
(s

)

k=0 k=1 k=2

Solve time

Init time

Solution is random
array with seed=1

Performance Engineering for Sparse Linear Solvers 118

SC25

RACE: Backup

Performance Engineering for Sparse Linear Solvers 119

SC25

MPK – existing caching approaches

▪ Huber et al.: Graph-based higher-order time integration of PDEs1

▪ “Geometrical approach” based on matrix bandwidth

▪ Works for 2D stencil matrices → Runs into problem for 3D and/or unstructured
matrices

▪ Mohiyuddin et al.: Minimizing communication in sparse matrix solvers2

▪ “Domain decomposition” of underlying graph

▪ Requires “ghosting” → Indirect accesses or redundant copies of the matrix entries →
Scalability!!

→ Exploit level structure in RACE for cache blocking!

1Huber et al., 2021. Graph-based multi-core higher-order time integration of linear autonomous partial differential equations. J. Comput. Sci. DOI:10.1016/j.jocs.2021.101349

2Mohiyuddin et al., 2009. Minimizing communication in sparse matrix solvers. In Proceedings of the SC’09. DOI:10.1145/1654059.1654096

RACE

Performance Engineering for Sparse Linear Solvers 120

https://doi.org/10.1016/
https://doi.org/10.1016/j.jocs.2021.101349
https://doi.org/10.1145/1654059.1654096
https://doi.org/10.1145/1654059.1654096

SC25

RACE MPK – First Implementation

Intel Xeon Gold 6248
• 1 Socket (20c)

pwtk matrix
• 𝑁𝑟 = 217,918
• 𝑁𝑛𝑧 = 11,634,424

pwtk matrix

Memory trafficPerformance

SpMV
Roofline

SpMV Roofline

MPK
Roofline

Performance Engineering for Sparse Linear Solvers 121

SC25

RACE MPK – Performance Problem Identified

▪ Scheme seems to work (reduces data traffic) – at least for pwtk

▪ But: Performance !!!!

▪ Analysis of hardware performance counters (LIKWID) for pwtk matrix:
INSTR_RETIRED_ANY up 2x for level based SpMV!

→ Frequent thread syncronisations!

Reason: After each level threads sync!

Measures:
→ Reduce #levels by level aggregation („LG“)
→ Global sync. replaced by point-to-point sync. („p2p“)

LG

Performance Engineering for Sparse Linear Solvers 122

SC25

RACE MPK – LG optimization

pwtk matrix

Memory trafficPerformance

SpMV
Roofline

Intel Xeon Gold 6248
• 1 Socket (20c)

pwtk matrix
• 𝑁𝑟 = 217,918
• 𝑁𝑛𝑧 = 11,634,424

Performance Engineering for Sparse Linear Solvers 123

SC25

RACE MPK – LG+p2p optimization

pwtk matrix

Memory trafficPerformance

☺

SpMV
Roofline

Intel Xeon Gold 6248
• 1 Socket (20c)

pwtk matrix
• 𝑁𝑟 = 217,918
• 𝑁𝑛𝑧 = 11,634,424

Performance Engineering for Sparse Linear Solvers 124

SC25

Outlook: Distributed-Memory SpMV

Slides courtesy of Dane Lacey, NHR@FAU

Performance Engineering for Sparse Linear Solvers 125

SC25

SpMV Example

1

3

2

8

9

0

1

1

0

0

0

0

0

0

0

0

3 5 3

2 1 1 1

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2

A = x = y =

Performance Engineering for Sparse Linear Solvers 126

1

3

2

8

9

0

1

1

0

0

0

0

0

0

0

0

3 5 3

2 1 1 1

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2

SC25

SpMV Example

=*

24

17

87

9

94

23

10

3

Performance Engineering for Sparse Linear Solvers 127

SC25

Distributed SpMV Example

3 5 3

2 1 1 1

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2

1

3

2

8

9

0

1

1

MPI Proc. 3

MPI Proc. 2

MPI Proc. 1

MPI Proc. 0

The x vector is also “partitioned”, to
reduce redundant data across

processes

Performance Engineering for Sparse Linear Solvers 128

2 7 3

1 2

3 5 3

2 1 1 1

2 9 2 3

4 1 3 2

SC25

Distributed SpMV Example

1 5 5

1 1

1

3

2

8

9

0

1

1

MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

*

*

*

*

Performance Engineering for Sparse Linear Solvers 129

SC25

Distributed SpMV Example

3 5 3

2 1 1 1

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2

1

3

2

8

9

0

1

1

MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

lo
ca

l x

lo
ca

l A

lo
ca

l x

lo
ca

l A

lo
ca

l x

lo
ca

l A

lo
ca

l x

lo
ca

l A

Performance Engineering for Sparse Linear Solvers 130

SC25

Distributed SpMV Example

1

3

2

8

9

0

1

1

MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

3 5 3

2 1 1 1

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2

Performance Engineering for Sparse Linear Solvers 131

3 5 3

2 1 1 1

SC25

Distributed SpMV Example

1

3

2

8

9

0

1

1

MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2

0

0

0

0

0

1

1

1

2

2

3

Performance Engineering for Sparse Linear Solvers 132

2 7 3

1 2

2 9 2 3

4 1 3 2

1 5 5

1 1

3 5 3

2 1 1 1

0

1

8

2

3

9

1

2

8

1

SC25

Distributed SpMV Example

1

3

2

8

9

0

1

1

MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

0

0

0

0

0

1

1

1

2

2

3

Performance Engineering for Sparse Linear Solvers 133

9

0

1

3

2

8

1

1

0

1

8

2

3

9

1

2

8

1

SC25

Distributed SpMV Example

3 5 3

2 1 1 1

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2

MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

*

*

*

*

0

0

0

0

0

1

1

1

2

2

3

Performance Engineering for Sparse Linear Solvers 134

3 5 3

2 1 1 1

SC25

Distributed SpMV Example

1

3

2

8

9

0

1

1

MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

2

2

8

3 8

9

1

0

1

1

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2

0

0

0

0

0

1

1

1

2

2

3

Performance Engineering for Sparse Linear Solvers 135

SC25

Outlook:
Cache-Blocking Distributed-Memory MPK

Performance Engineering for Sparse Linear Solvers 136

SC25

Proc 1

Proc 0

Distributed MPK

Performance Engineering for Sparse Linear Solvers 137

SC25

Proc 0

Distributed MPK

Computing 𝐴𝑥 on Proc 0
requires neighbors of Proc 0.

How about computing 𝐴𝑝𝑥?

Performance Engineering for Sparse Linear Solvers 138

SC25

Proc 0

Distributed MPK

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

Performance Engineering for Sparse Linear Solvers 139

SC25

Proc 0

Distributed MPK

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

To compute 𝐴2𝑥 we need
𝐴𝑥 on the neighbors.

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

Performance Engineering for Sparse Linear Solvers 140

SC25

Proc 0

Distributed MPK

To compute 𝐴2𝑥 we need
𝐴𝑥 on the neighbors.

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

Performance Engineering for Sparse Linear Solvers 141

SC25

Proc 0

Distributed MPK

To compute 𝐴3𝑥 we need
𝐴2𝑥 on the neighbors.

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥

𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥

𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥

𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥

In general, to compute
𝐴𝑝𝑥 we need 𝑝 neighbors.

Performance Engineering for Sparse Linear Solvers 142

SC25

Distributed MPK

* D. Lacey, C. Alappat, F. Lange, G. Hager, and G. Wellein: Cache Blocking of Distributed-Memory Parallel Matrix
Power Kernels, to be submitted.

It works!

No redundant work
and/or extra
communication
required, see upcoming
paper.*

Performance Engineering for Sparse Linear Solvers 143

Tutorial conclusions

• Memory bandwidth limitations are ubiquitous in sparse linear solvers

• SpMV performance depends on the storage format

• Roofline is an indispensable tool for performance analysis

• Time to solution is a fusion of flop/s performance and fast
convergence

• Matrix powers can be optimized for better cache reuse

SC25 Performance Engineering for Sparse Linear Solvers 144

SC25

Appendix

Performance Engineering for Sparse Linear Solvers 145

Performance Engineering for Linear Solvers

This tutorial covers code analysis, performance modeling, and optimization for linear
solvers on CPU and GPU nodes. Performance Engineering is often taught using simple
loops as instructive examples for performance models and how they can guide
optimization; however, full, preconditioned linear solvers comprise multiple back-to-back
loops enclosed in an iteration scheme that is executed until convergence is achieved.
Consequently, the concept of “optimal performance” has to account for both hardware
resource efficiency and iterative solver convergence. We convey a performance
engineering process that is geared towards linear iterative solvers. After introducing basic
notions of hardware organization and storage for dense and sparse data structures, we
show how the Roofline performance model can be applied to such solvers in predictive and
diagnostic ways and how it can be used to assess the hardware efficiency of a solver,
covering important corner cases such as pure memory boundedness. Then we advance to
the structure of preconditioned solvers, using the Conjugate Gradient Method (CG)
algorithm as a leading example. Hotspots and bottlenecks of the complete solver are
identified followed by the introduction of advanced performance optimization techniques
like preconditioning and cache blocking.

SC25 Performance Engineering for Sparse Linear Solvers 146

Christie L. Alappat

Christie Alappat received his master’s degree with honors from the Bavarian Graduate School of

Computational Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg. He is in the final

stages of completing his doctoral studies under the guidance of Prof. Gerhard Wellein. At the same

time, he is currently working at Intel as a math algorithm engineer. His research interests include

performance engineering, sparse matrix and graph algorithms, iterative linear solvers, and eigenvalue

computation. He is the author of the RACE open-source software framework, which is used to

accelerate challenging computations in sparse linear algebra on modern compute devices. He is also

the lead author of a paper that received the SIAM Activity Group on Supercomputing (SIAG/SC) Best

Paper Prize in 2024.

https://hpc.fau.de/person/christie-alappat/

SC25 Performance Engineering for Sparse Linear Solvers 147

https://hpc.fau.de/person/christie-alappat/

Jonas Thies

Jonas has more than 20 years of experience in HPC and scientific computing with applications in

CFD, climate research and quantum physics. Specifically, he has worked on domain decomposition

methods for sparse linear systems, implicit ocean models, sparse eigenvalue problems on

heterogeneous supercomputers, code optimization for multi-core CPUs and vector processors, and
software and performance engineering for scientific applications.

Jonas has a PhD in applied mathematics (Groningen 2011). He spent two years at the Center for

Interdisciplinary Mathematics in Uppsala, after which he moved to Cologne as a Scientific Employee

of the German Aerospace Center (DLR) Institute for Software Technology. There he led a research

group on parallel numerics from 2017 to 2021. Since June 2021 he is an Assistant Professor at the

Delft High Performance Computing Center DHPC, where he coordinates the center‘s training

activities.

https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/people/dr-j-jonas-thies

SC25 Performance Engineering for Sparse Linear Solvers 148

https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/people/dr-j-jonas-thies

Hartwig Anzt

Hartwig Anzt is the Chair of Computational Mathematics at the TUM School of Computation, Information and Technology

of the Technical University of Munich (TUM) Campus Heilbronn. He also holds a Research Associate Professor position at

the Innovative Computing Lab (ICL) at the University of Tennessee (UTK). Hartwig Anzt received a PhD in applied

mathematics from the Karlsruhe Institute of Technology (KIT) and specializes in iterative methods and preconditioning

techniques for the next generation hardware architectures. He also has a long track record of high-quality development.

He is author of the MAGMA-sparse open-source software package and managing lead of the Ginkgo math software

library. Hartwig Anzt had served as a PI in the Software Technology (ST) pillar of the US Exascale Computing Project

(ECP), including a coordinated effort aiming at integrating low-precision functionality into high-accuracy simulation codes.

He also is a PI in the EuroHPC project MICROCARD.

Hartwig Anzt is the main author of more than 100 peer-reviewed publications, part of the scientific committee of

international conferences, Associate Editor of the SIAM Journal on Scientific Computing (SISC), Associate Editor of ACM

Transactions on Parallel Computing, workshop chair for ISC High Performance 2022, and has been elected as SIAM

Activity Group on Supercomputing program manager.

https://hartwiganzt.github.io/

SC25 Performance Engineering for Sparse Linear Solvers 149

https://hartwiganzt.github.io/

Georg Hager

Georg Hager holds a PhD and a habilitation degree in Computational Physics from the University of

Greifswald. Since 2021 he heads the Training and Support Division of the newly founded “Erlangen

National High Performance Computing Center” (NHR@FAU). Previously he was a senior researcher

in the HPC Services group at Erlangen Regional Computing Center (RRZE), which is part of the

Friedrich-Alexander-Universität Erlangen-Nürnberg. Recent research includes architecture-specific

optimization strategies for current microprocessors, performance engineering of scientific codes, and

analytic modeling of massively parallel programs. His textbook “Introduction to High Performance

Computing for Scientists and Engineers” is recommended or required reading in many HPC-related

lectures and courses worldwide. He has more than two decades of experience in teaching high

performance computing and performance engineering to students and scientists. Together with

colleagues from NHR@FAU and other centers, he conducts long-standing series of tutorials on

Performance Engineering and Hybrid Programming.

https://blogs.fau.de/hager

SC25 Performance Engineering for Sparse Linear Solvers 150

https://blogs.fau.de/hager

