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Tutorial Agenda

• Brief introduction to node-level computer architecture

• Performance modeling with the Roofline model

• Sparse matrix-vector multiplication (SpMV) performance, sparse-
matrix data formats, and Roofline modeling of SpMV

• The Conjugate Gradient (CG) algorithm

• Preconditioning and preconditioned CG (PCG)

• Accelerating matrix power kernels (MPK) by cache blocking

• Optional: distributed-memory SpMV and MPK cache blocking
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HPC Node Architecture

CPUs

GPUs
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Multi-core today: Intel Xeon Sapphire Rapids (2023)

▪ Xeon “Sapphire Rapids” (Platinum/Gold/Silver/Bronze):
Up to 60 cores running at 1.7+ GHz 
(+ “Turbo Mode” 4.8 GHz),

▪ “Intel 7” process / up to 350 W

▪ Multi-die package (4 chips)

▪ Clock frequency:
flexible☺

https://www.techpowerup.com/292204/intel-sapphire-rapids-xeon-4-tile-mcm-annotated
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A more current example – lots of “topology”!

PCIe

accelerator

CPU 1

CPU 0

hyper-threadcoredie

smallest possible ccNUMA
domain



Nvidia H100 “Hopper” SXM5 specs

Architecture

▪ 80 B Transistors

▪ ~ 1.8 GHz clock speed

▪ ~ 144 “SM” units

▪ 128 SP “cores” each (FMA)

▪ 64 DP “cores” each (FMA)

▪ 4 “Tensor Cores” each

▪ 2:1 SP:DP 

performance

▪ ~ 34 TFlop/s DP peak (FP64)

▪ 50 MiB L2 Cache

▪ 80 GB HBM3 

▪ MemBW ~ 3300 GB/s (theoretical)

▪ MemBW ~ 3000 GB/s (measured)

© Nvidia
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Threads, warps, grids on NVIDIA GPUs 

▪ Threads are organized in 
warps (32 threads)

▪ Warps make up a block

▪ A block executes on one 
“core” (SM)

▪ Scheduling happens
automatically

▪ Developer must map thread 
IDs to “work items” 
(iterations)

▪ Threads in a warp should 
access consecutive memory 
addresses



The Roofline Model

Bottleneck-based thinking

Simple models for single loops

Multiple loops
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Structure of typical solver code
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parallel_for(i=0..N) { // N>>1

update(data);

}

“Steady state”
▪ Repetitive

▪ Negligible startup/wind-down 

overhead

Runtime model:  𝑇 = 𝑓($STUFF,$HARDWARE)

SC25

iterate
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A simple two-bottleneck model of loop code 
execution
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Simplistic view of the hardware:

! may be multiple levels

do i = 1,<sufficient> 

<complicated stuff doing 

N flops causing 

V bytes of data transfer>

enddo

Execution units

max. performance

𝑷𝒑𝒆𝒂𝒌

Data source/sink

Data path, bandwidth 
𝒃𝑺
→ Unit: byte/s

Simplistic view of the software:

Computational intensity 𝑰 =
𝑵

𝑽

→ Unit: flop/byte

Which takes longer?
• Data transfer
• Work execution



Predicting the (minimum) runtime of a loop

Two bottlenecks:

#pragma omp parallel for

for(i=0; i<107; ++i)

a[i] = a[i] + s * c[i];

8-core CPU 

(3 GHz Intel Sandy Bridge)

𝑅𝐵𝑊
𝑚𝑎𝑥 = 40

Gbyte

s

𝑊𝐵𝑊 = 3 × 8 × 107 bytes

𝑅𝑓𝑙𝑜𝑝𝑠
𝑚𝑎𝑥 = 192

Gflops

s

𝑊𝑓𝑙𝑜𝑝𝑠 = 2 × 107 flops

𝑇𝑓𝑙𝑜𝑝𝑠 =
2 × 107 flops

192
Gflops
s

= 104 𝜇𝑠 𝑇𝐵𝑊 =
2.4 × 108 bytes

40
Gbyte
s

= 6.0 ms
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Resources 
needed (code 

properties)

Resources 
rates provided 
(machine 
properties)

𝑇min = max 𝑇𝑓𝑙𝑜𝑝𝑠, 𝑇𝐵𝑊
= 6 ms

Full-overlap assumption:



From time to performance

SC25

𝑃𝑢𝑝𝑝𝑒𝑟 =
𝑊𝑓𝑙𝑜𝑝𝑠

max(𝑇𝑓𝑙𝑜𝑝𝑠,𝑇𝐵𝑊)
=

𝑊𝑓𝑙𝑜𝑝𝑠

max
𝑊𝑓𝑙𝑜𝑝𝑠

𝑅𝑓𝑙𝑜𝑝𝑠
,
𝑊𝐵𝑊
𝑅𝐵𝑊

=

min 𝑅𝑓𝑙𝑜𝑝𝑠, 𝑅𝐵𝑊 ×
𝑊𝑓𝑙𝑜𝑝𝑠

𝑊𝐵𝑊

Application model: 
Computational 

intensity [flop/byte]

Machine model: 
Memory bandwidth 

[byte/s]

Machine model: 
Peak performance 

[flop/s]
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“Roofline”!?

Common nomenclature:

𝑅𝑓𝑙𝑜𝑝𝑠 → 𝑃𝑝𝑒𝑎𝑘 peak performance

𝑅𝐵𝑊 → 𝑏𝑆 memory bandwidth
𝑊𝑓𝑙𝑜𝑝𝑠

𝑊𝐵𝑊
→ 𝐼 computational intensity

SC25
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𝑃𝑢𝑝𝑝𝑒𝑟 = min 𝑃𝑝𝑒𝑎𝑘 , 𝐼 × 𝑏𝑆

R.W. Hockney and I.J. Curington: 

f1/2: A parameter to characterize memory and communication bottlenecks. 

Parallel Computing 10, 277-286 (1989).  DOI: 10.1016/0167-8191(89)90100-2

S. Williams: Auto-tuning Performance on Multicore Computers.  

UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

compute 
bound

memory 
bound

Threshold:
≈ 10-15 F/B for current 

Server CPUs/GPUs
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http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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Hands-On:

Exploring node topology and bandwidth

Performance Engineering for Sparse Linear Solvers 16



Diagnostic modeling

Two cluster jobs…

SC25

Intensity
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Pmax

𝑃𝑚𝑒𝑎𝑠

𝑁𝑚𝑒𝑎𝑠

𝑉𝑚𝑒𝑎𝑠
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Roofline: Simple Examples

Dense linear algebra

Sparse linear algebra

Simple solvers: CG

Hartwig Anzt, hartwig.anzt@kit.eduSC25 Performance Engineering for Sparse Linear Solvers 23



Dense linear algebra

Roofline thinking: 

What is the computational intensity?

SC25

for(i=0; i<N; ++i)
s += a[i]*b[i];

for(i=0; i<N; ++i) 
a[i] = a[i]+s*x[i];

for(r=0; r<NR; ++r)   
for(c=0; c<NC; ++c)

y[r] += A[r*NC+c]*x[c];

dot product (BLAS-1)

dense MVM (BLAS-2)
dot-product style

daxpy (BLAS-1)

for(k=0; k<NK;++k)
for(l=0; l<NL; ++l)   

for(m=0; m<NM; ++m)
y[k*NL+l] += 

A[k*NM+m]*B[l*NM+m];

dense MMM (BLAS-3)
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Dense MVM

• One DP read from memory for each matrix entry

• x[] and y[] are read and updated from cache after 1st read

• → 8 byte and 2 flops per iteration

Computational intensity  𝐼 =
2 𝑓𝑙𝑜𝑝

8 𝑏𝑦𝑡𝑒
= 0.25

𝑓𝑙𝑜𝑝

𝑏𝑦𝑡𝑒

SC25

for(r=0; r<NR; ++r)   
for(c=0; c<NC; ++c)

y[r] += A[r*NC+c]*x[c];
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Dense MMM?

• Blocking/unrolling techniques can increase intensity beyond the 
Roofline knee

→ peak performance achievable

SC25

for(k=0; k<NK;++k)
for(l=0; l<NL; ++l)   

for(m=0; m<NM; ++m)
y[k*NL+l] += 

A[k*NM+m]*B[l*NM+m];

for(k=0; k<NK; k+=2)
for(l=0; l<NL; l+=2)   

for(m=0; m<NM; ++m)
y[k*NL+l]         += A[k*NM+m]*B[l*NM+m];
y[(k+1)*NL+l]     += A[(k+1)*NM+m]*B[l*NM+m];
y[k*NL+(l+1)]     += A[k*NM+m]*B[(l+1)*NM+m];
y[(k+1)*NL+(l+1)] += A[(k+1)*NM+m]*B[(l+1)*NM+m];
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Sparse Matrices and SpMV

Sparse Matrix Formats

Sparse Matrix Vector Product Parallelization

SC25 Performance Engineering for Sparse Linear Solvers 29



Matrix Vector Multiplication

• Central building block in many complex algorithms: 
• Orthogonalization, power iteration in Page Rank, Power flow of a system …

• Before we turn to sparse matrices, we recall how we store & handle dense matrices on 
parallel processors (i.e. GPUs)

Input                 Output 

SC25 Performance Engineering for Sparse Linear Solvers 30



__global__ void sgemv_rowmajor( …)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for( int col=0; col<n; col++){
sum += m[ row*n + col ] * x[ col ];

}
y[ row ] = alpha * sum;

}  
}

__global__ void sgemv_colmajor( …)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for( int col=0; col<n; col++){
sum += m[ row + n*col ] * x[ col ];

}
y[ row ] = alpha * sum;

}  
}

Matrix Vector Multiplication Input                 Output 

Row-major

Col-major

Parallel threads

SC25 Performance Engineering for Sparse Linear Solvers 31



__global__ void sgemv_rowmajor( …)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for( int col=0; col<n; col++){
sum += m[ row*n + col ] * x[ col ];

}
y[ row ] = alpha * sum;

}  
}

__global__ void sgemv_colmajor( …)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for( int col=0; col<n; col++){
sum += m[ row + n*col ] * x[ col ];

}
y[ row ] = alpha * sum;

}  
}

Matrix Vector Multiplication Input                 Output 

Row-major

Col-major

Parallel threads

First read
Second read
Third read
…
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__global__ void sgemv_rowmajor( …)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for( int col=0; col<n; col++){
sum += m[ row*n + col ] * x[ col ];

}
y[ row ] = alpha * sum;

}  
}

__global__ void sgemv_colmajor( …)
{

int row = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0;
if (row < n){

for( int col=0; col<n; col++){
sum += m[ row + n*col ] * x[ col ];

}
y[ row ] = alpha * sum;

}  
}

Matrix Vector Multiplication Input                 Output 

Row-major

Col-major

Parallel threads

First read
Second read
Third read
…

G
FL

O
P/

s
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Sparse Matrix Vector Multiplication

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).

Input                 Output 

SC25 Performance Engineering for Sparse Linear Solvers 34



Value

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.  

Sparse Matrix Vector Multiplication Input                 Output 
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Value

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.  

Need to also store location of nonzero elements!

Column-index

Row-index

Memory footprint of COO format:
nz(val) + 2*nz(int) 

COO format Input                 Output 
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Value

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.  

Need to also store location of nonzero elements!

Column-index

Row-index

Memory footprint of COO format:
nz(val) + 2*nz(int) 

COO format

Hands-on Exercise: Convert this matrix into COO format:

Compute the memory requirement (# vals + # int)

Input                 Output 
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Value

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.  

Need to also store location of nonzero elements!

Column-index

Row-index

Memory footprint of COO format:
nz(val) + 2*nz(int) 

COO format

Hands-on Exercise: Convert this matrix into COO format:

Compute the memory requirement (# vals + # int)
17 vals + 34 int

Input                 Output 
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Split nonzero elements into chunks and parallelize across chunks.
• Partial sums need synchronization / atomics to avoid write conflicts.
• Non-coalesced memory access (because row-major).

T1
T2
T3
T4
T5
T6

=*

Column-index

Value

Row-index

COO SpMV Input                 Output 
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Value

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.  

Need to also store location of nonzero elements!

Column-index

Memory footprint of COO format:
nz(val) + 2*nz(int) 

CSR (==CRS) format Input                 Output 
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Value

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.  

Need to also store location of nonzero elements!

Memory footprint of CSR format:
nz(val) + nz(int) + (n+1) (int)

Column-index

Points to the first element in each row

Number of nonzero elements

Memory footprint of COO format:
nz(val) + 2*nz(int) 

CSR format Input                 Output 
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Value

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.  

Need to also store location of nonzero elements!

Memory footprint of CSR format:
nz(val) + nz(int) + (n+1) (int)

Column-index

Points to the first element in each row

Number of nonzero elements

Memory footprint of COO format:
nz(val) + 2*nz(int) 

CSR format Input                 Output 

SC25 Performance Engineering for Sparse Linear Solvers 42



Value

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.  

Need to also store location of nonzero elements!

Memory footprint of CSR format:
nz(val) + nz(int) + (n+1) (int)

Column-index

Points to the first element in each row

Number of nonzero elements

Memory footprint of COO format:
nz(val) + 2*nz(int) 

CSR format

Hands-on Exercise: Convert this matrix into CSR format:

Compute the memory requirement (# vals + # int)

Input                 Output 
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Value

• Matrix     contains only few nonzero elements.
• Storing all entries results in large overhead (memory & computation).
• Idea: Store only nonzero elements [nz] explicitly.  

Need to also store location of nonzero elements!

Memory footprint of CSR format:
nz(val) + nz(int) + (n+1) (int)

Column-index

Points to the first element in each row

Number of nonzero elements

Memory footprint of COO format:
nz(val) + 2*nz(int) 

CSR format

Hands-on Exercise: Convert this matrix into CSR format:

Compute the memory requirement (# vals + # int)
17 vals + 24 int

Input                 Output 
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CSR SpMV

Column-index

Value

How to parallelize this?

Row-pointer

Input                 Output 
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• Parallelize by rows:
• Every “thread” handles the computation of one sum in local memory.

T1
T2
T3
T4
T5
T6

T1
T2
T3
T4
T5
T6

=*

Column-index

Value

CSR SpMV

Row-pointer

Input                 Output 
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• Parallelize by rows:
• Every “thread” handles the computation of one sum in local memory.
• Significant workload imbalance!
• Can not store the matrix in Col-Major format for coalesced access!

T1
T2
T3
T4
T5
T6

T1
T2
T3
T4
T5
T6

=*

Column-index

Value

CSR SpMV

Row-pointer

Input                 Output 
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for( row=0; row<n; row++ )

{

sum = 0.0;

for( j=rowptr[row]; j<rowptr[row+1]; j++)

sum += values[ j ] * x[ colind[j] ];

y[ row ] =  alpha * sum;    

}

CSR SpMV

Storing values and columns in row-major.
-> On GPUs: non-coalesced memory access

Input                 Output 
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for( row=0; row<n; row++ )

{

sum = 0.0;

for( j=rowptr[row]; j<rowptr[row+1]; j++)

sum += values[ j ] * x[ colind[j] ];

y[ row ] =  alpha * sum;    

}

CSR SpMV

Storing values and columns in row-major.
-> On GPUs: non-coalesced memory access

Can we use column-major? 
-> Only if all rows contain the same number of nonzero elements

Input                 Output 
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for( row=0; row<n; row++ )

{

sum = 0.0;

for( j=rowptr[row]; j<rowptr[row+1]; j++)

sum += values[ j ] * x[ colind[j] ];

y[ row ] =  alpha * sum;    

}

CSR SpMV

Storing values and columns in row-major.
-> On GPUs: non-coalesced memory access

Can we use column-major? 
-> Only if all rows contain the same number of nonzero elements

Input                 Output 
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ELL Format Input                 Output 
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ELL Format Input                 Output 

`Left-align nonzero elements’
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ELL Format Input                 Output 

`Left-align nonzero elements’

Pad rows to uniform length

Memory volume: 
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer
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ELL Format Input                 Output 

Pad rows to uniform length

Memory volume: 
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer
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ELL SpMV Input                 Output 

T1
T2
T3
T4
T5
T6

Memory volume: 
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Pad rows to uniform length
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ELL SpMV Input                 Output 

T1
T2
T3
T4
T5
T6

Memory volume: 
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Coalesced access

Pad rows to uniform length
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ELL SpMV Input                 Output 

T1
T2
T3
T4
T5
T6

Memory volume: 
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Coalesced access
Can be wasteful (overhead)

Pad rows to uniform length
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ELL SpMV Input                 Output 

T1
T2
T3
T4
T5
T6

Memory volume: 
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Coalesced access
Can be wasteful (overhead)

Pad rows to uniform length

Hands-on Exercise: Convert this matrix into ELL format:

Compute the memory requirement (# vals + # int)
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ELL SpMV Input                 Output 

T1
T2
T3
T4
T5
T6

Memory volume: 
values: max_nnz_row * num_rows
col-index: max_nnz_row * num_rows
no row pointer

Coalesced access
Can be wasteful (overhead)

Pad rows to uniform length

Hands-on Exercise: Convert this matrix into ELL format:

Compute the memory requirement (# vals + # int)
36 vals + 36 int
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• Partition the matrix into blocks & use ELL for the distinct blocks.
• Reduce overhead of ELL.
• Can still store col-major.

Sliced-ELL Format Input                 Output 
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• Partition the matrix into blocks & use ELL for the distinct blocks.
• Reduce overhead of ELL.
• Can still store col-major.

Block0

Block1

Block2

Sliced-ELL Format Input                 Output 
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• Partition the matrix into blocks & use ELL for the distinct blocks.
• Reduce overhead of ELL.
• Can still store col-major.

Block0

Block1

Block2

Sliced-ELL Format Input                 Output 

SC25 Performance Engineering for Sparse Linear Solvers 62



• Partition the matrix into blocks & use ELL for the distinct blocks.
• Reduce overhead of ELL.
• Can still store col-major.
• Need for a row pointer.

sliced-ELL format :

Slice matrix into blocks, store blocks in 
ELL format with offset-pointer.

Block0

Block1

Block2

Sliced-ELL Format Input                 Output 

rowptr = [ 0  10  14  16 ] 
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Sliced-ELL GeMV 

Hands-on Exercise: Convert this matrix into Sliced-ELL format (SELL-2):

Compute the memory requirement (# vals + # int)

Input                 Output 
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Sliced-ELL GeMV 

Hands-on Exercise: Convert this matrix into Sliced-ELL format (SELL-2):

Rowptr: 0 6 18 26

Compute the memory requirement (# vals + # int)
26 vals + 26 + 4 int

Input                 Output 

SC25 Performance Engineering for Sparse Linear Solvers 65



Sliced-ELL GeMV Input                 Output 

• How can we optimize this? Minimize the overhead? What is the overhead dependent on?
• Bring rows with similar number of nonzero elements into the same block.
• Sort rows by “length” and reorder the matrix, then convert to Sliced-ELL

• What happens for block-size 1?
• What happens for block size n (matrix size)?
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SpMV Formats and Kernels

“Different kernels optimal for different problems”

COO
• can compensate workload imbalance for irregular patterns
• Efficient for MIMD processing
• Strong support for atomics needed
CSR
• small memory footprint
• Needs some logic for row-parallel processing 
• Efficient for MIMD processing

ELL
• Efficient for balanced matrices
• Enables col-major storage
• Efficient for SIMD processing

SELL-c
• Enables col-major storage
• Tunable between CSR and ELL
…

Input                 Output 
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SpMV (CSR)
Roofline
Optimistic intensity:

SC25

for (int row = 0; row < num_rows; ++row) {
double sum = 0.0;
for (int k = row_ptrs[row]; k < row_ptrs[row + 1]; ++k)
sum += mat_values[k] * b[col_idxs[k]];

x[row] += sum;
}

𝐼𝑚𝑎𝑥 =
2 𝑁𝑛𝑧

12 𝑁𝑛𝑧 + 20 𝑁𝑟 + 8 𝑁𝑐

F

B

= + •
=

1

6+10/𝑁𝑛𝑧𝑟+ 4/𝑁𝑛𝑧𝑐

F

B

=
1

6+10/𝑁𝑛𝑧𝑟+ 4/𝑁𝑛𝑧𝑟

F

B

𝑁𝑛𝑧𝑟≫10 1

6

F

B

sq
u

are m
atrix
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Roofline “failure” with SpMV

Reasons for performance not attaining the limit

1. Intensity lower than the minimum
• More RHS traffic than the optimistic limit ( 

4

𝑁𝑛𝑧𝑟
B/F)

2. “Slow code”
• “invisible” performance ceiling due to inefficient instructions or inefficient 

execution

3. Load imbalance
• A single process/thread cannot saturate the memory bandwidth

4. Erratic memory access patterns for RHS
• Latency dominates

SC25

Intensity

P
e
rf

o
rm

a
n
c
e

Pmax

𝑃𝑚𝑒𝑎𝑠

𝑁𝑚𝑒𝑎𝑠

𝑉𝑚𝑒𝑎𝑠
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Experiences with SpMV on GPUs

Looking at ~3,000 test matrices from Suite Sparse Matrix Collection

SC25

Absolute CSR  limit for 
𝑏𝑆 = 3 TB/s
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Hands-On:

SpMV benchmarking
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Solving Sparse Linear Systems

Why we often don’t use direct solvers

Characteristics and optimization of iterative solvers

Preconditioning using Matrix Polynomials

Jonas Thies (j.thies@tudelft.nl)



Can we use direct solvers for solving sparse problems?

SC25 Performance Engineering for Sparse Linear Solvers 74

Scalar or block-LU?

Are zeros preserved in the factorization?

Can we store the fill-in?



Can we use direct solvers for solving sparse problems?

SC25 Performance Engineering for Sparse Linear Solvers 75

Scalar or block-LU?

Are zeros preserved in the factorization?

Can we store the fill-in?

LU



Iterative Solvers

SC25 Performance Engineering for Sparse Linear Solvers 76

Generate a sequence of solution approximations with increasing approximation quality.

𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯



Iterative Solvers
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Generate a sequence of solution approximations with increasing approximation quality.

Relaxations

• Base on matrix splitting

• Jacobi relaxation:

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯



Iterative Solvers
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Generate a sequence of solution approximations with increasing approximation quality.

Relaxations

• Base on matrix splitting

• Jacobi relaxation:

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Krylov Subspace Methods

• Iteratively grow Krylov subspace

• Approximate solution

in Krylov Subspace

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐾𝑖 𝐴, 𝑟 = 𝑠𝑝𝑎𝑛 𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑖−1𝑟

𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ℝ𝑛

𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯



Iterative Solvers
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Generate a sequence of solution approximations with increasing approximation quality.

Relaxations

• Base on matrix splitting

• Jacobi relaxation:

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Krylov Subspace Methods

• Iteratively grow Krylov subspace

• Approximate solution

in Krylov Subspace

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Multigrid Methods

• Recursively project problem to 

coarser grid and solve on coarser 

grid

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐾𝑖 𝐴, 𝑟 = 𝑠𝑝𝑎𝑛 𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑖−1𝑟

𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ℝ𝑛

𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯



𝑥0 ⇝ 𝑥1 ⇝ 𝑥2 ⇝ 𝑥3 ⇝⋯

𝐾𝑖 𝐴, 𝑟 = 𝑠𝑝𝑎𝑛 𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑖−1𝑟

𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ℝ𝑛

Iterative Solvers
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Generate a sequence of solution approximations with increasing approximation quality.

Relaxations

• Base on matrix splitting

• Jacobi relaxation:

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Krylov Subspace Methods

• Iteratively grow Krylov subspace

• Approximate solution

in Krylov Subspace

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Multigrid Methods

• Recursively project problem to 

coarser grid and solve on coarser 

grid

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity



Example: Conjugate Gradients (CG)

Krylov Subspace Methods

• Iteratively grow Krylov subspace

• Approximate solution

in Krylov Subspace

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Optimal Krylov solver for symmetric and positive definite (SPD) 

matrices

Requires storing only four additional vectors



Preconditioning Iterative Solvers
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Transform linear problem by multiplying both sides 

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏



Preconditioning Iterative Solvers
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Transform linear problem by multiplying both sides 

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

Iterative solver as preconditioner

• Multigrid

• Jacobi

• Block-Jacobi

• Sparse Approximate Inverses

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏

𝐷−1𝐴𝑥 = 𝐷−1𝑏



Preconditioning Iterative Solvers
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Transform linear problem by multiplying both sides 

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

Iterative solver as preconditioner

• Multigrid

• Jacobi

• Block-Jacobi

• Sparse Approximate Inverses

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Incomplete Factorizations

• Compute LU factorization with 

restricted fill-in 

• Replace triangular solver with 

iteratively solving factors

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏

𝐷−1𝐴𝑥 = 𝐷−1𝑏

𝐿 ⋅ 𝑦 = 𝑏 𝑈 ⋅ 𝑥 = 𝑦



Preconditioning Iterative Solvers
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Transform linear problem by multiplying both sides 

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

Iterative solver as preconditioner

• Multigrid

• Jacobi

• Block-Jacobi

• Sparse Approximate Inverses

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Incomplete Factorizations

• Compute LU factorization with 

restricted fill-in 

• Replace triangular solver with 

iteratively solving factors

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Polynomial preconditioners

• Choose 

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏

𝐷−1𝐴𝑥 = 𝐷−1𝑏

𝐿 ⋅ 𝑦 = 𝑏 𝑈 ⋅ 𝑥 = 𝑦

𝐴 = 𝑀 − 𝑁

𝑃 = ෍

𝑖=0

𝑝−1

𝐼 − 𝑀−1𝐴 𝑖 𝑀−1



𝑃 = ෍

𝑖=0

𝑝−1

𝐼 − 𝑀−1𝐴 𝑖 𝑀−1

Preconditioning Iterative Solvers
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Transform linear problem by multiplying both sides 

with 𝑃 ≈ 𝐴−1 such that iterations converge faster.

Iterative solver as preconditioner

• Multigrid

• Jacobi

• Block-Jacobi

• Sparse Approximate Inverses

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Incomplete Factorizations

• Compute LU factorization with 

restricted fill-in 

• Replace triangular solver with 

iteratively solving factors

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

Polynomial preconditioners

• Choose 

• Matrix-Vector Prod. & Vector Ops

• Low arithmetic intensity

𝐴𝑥 = 𝑏 ⇔ 𝑃𝐴𝑥 = 𝑃𝑏 ⇔ ሚ𝐴𝑥 = ෨𝑏

ሚ𝐴 ෨𝑏

𝐷−1𝐴𝑥 = 𝐷−1𝑏

𝐿 ⋅ 𝑦 = 𝑏 𝑈 ⋅ 𝑥 = 𝑦

𝐴 = 𝑀 − 𝑁



Optimizing Iterative Solvers & Preconditioners

SC25 Performance Engineering for Sparse Linear Solvers 87

1. Optimizing the matrix vector product as common building block

• Optimization of sparse data format and processing scheme



Optimizing Iterative Solvers & Preconditioners

SC25 Performance Engineering for Sparse Linear Solvers 88

1. Optimizing the matrix vector product as common building block

• Optimization of sparse data format and processing scheme

2. Cache-Aware implementation

• Merging of Operations into super-kernels to reduce the memory access

BiCGStab Krylov solver (van der Vorst, 1992)



Optimizing Iterative Solvers & Preconditioners

SC25 Performance Engineering for Sparse Linear Solvers 89

1. Optimizing the matrix vector product as common building block

• Optimization of sparse data format and processing scheme

2. Cache-Aware implementation

• Merging of Operations into super-kernels to reduce the memory access

3. Replace memory access with additional computations

• Mixed Precision algorithms using low precision in parts of the computations

• Matrix Powers Kernel and cache blocking
high precision

low precision



SC25

Hands-On:

Conjugate-Gradient Solver
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Cache Blocking for the Matrix Power Kernel
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Motivation – Sparse Matrix Vector Multiplication

▪ Easy to parallelize but sparse irregular data structures / accesses

▪ SpMV Performance → Strongly Memory Bound (high code balance)

= + •

C(:) C(:) A(:,:) B(:)
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Motivation – Matrix power kernel (MPK)

for k=1:p; do

y[k] = SpMV(A, y[k-1])

done

y[0] y[1] y[2] y[3]

𝐴2𝑥 𝐴3𝑥𝐴𝑥𝑥

SpMV SpMV SpMV

▪ Calculate: 𝑦 = 𝐴𝑝𝑥

▪ Repeatedly perform back to back SpMVs

Same matrix 𝐴 loaded 𝑝 times from main memory!!!

How to cache the matrix 𝐴 across the matrix power calculation?
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4321 …5 64321 …5 6y = 𝐴3𝑥

4321 …5 64321 …5 6𝑦1 = 𝐴 𝑥

4321 …5 64321 …5 6𝑦2 = 𝐴2𝑥

Matrix power – Traditional approach vs. Cache Blocking 

SC25

Calculate 𝑦 = 𝐴3𝑥

RACE approachTRAD approach

Matrix accessed 3 times from memory

•= •=

Matrix accessed 1 time from memory

How to do that in general for sparse matrices?
Performance Engineering for Sparse Linear Solvers 94
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SpMV – Graph Traversal – RACE
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Sample matrix and its graph representation

Symmetric Matrix Undirected Graph

𝒞 𝑖 = 1 ≤ 𝑗 ≤ 𝑁 ∶ 𝐴𝑖,𝑗 ≠ 0

∀ 𝑖

𝒞(10)

𝒩 𝑢 = 𝑣 ∈ 𝒱 𝒢 : 𝑢, 𝑣 ∈ ℰ 𝐺

∀ 𝑢

10 11

18

9

2

17

3

𝒩(10)
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Sample matrix and its graph representation

Symmetric Matrix Undirected Graph
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RACE

144321 15…

levels
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RACE

14421 15…

Levels (𝐿)

2 4

SC25

Key property

𝒩 𝐿 𝑖 = {𝐿 𝑖 − 1 , 𝐿 𝑖 , 𝐿 𝑖 + 1 }

𝐴𝑝𝑥 computations on 𝐿(𝑖) will require 𝐴𝑝−1𝑥
to be complete on 𝐿 𝑖 − 1 , 𝐿 𝑖 , 𝐿 𝑖 + 1

Neighbors localized ➔ dependencies localized

33
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RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x 

Po
w

er
s

No cache blocking!
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RACE – Level traversal and matrix powers

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

Do not pollute the cache→ reuse all loaded elements

When updating level 1, indirect reads also go to level 2

SC25

Levels

M
at

ri
x 

Po
w

er
s
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RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

When updating level 2, indirect reads also go to levels 1 and 3

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x 

Po
w

er
s
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RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x 

Po
w

er
s

Performance Engineering for Sparse Linear Solvers 103



RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x 

Po
w

er
s
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RACE – Level traversal and matrix powers

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

do k = 1, p

y(:, k) = SpMV(A, y(:,k-1))

enddo

SC25

Levels

M
at

ri
x 

Po
w

er
s
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RACE: MPK implementation idea

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

SC25

p_start=1

p_end=3

Power 2 computation on 
level 5
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RACE – Input parameters and its influence   

144321 15… 𝐴𝑥5 6 7

144321 15… 𝐴2𝑥5 6 7

144321 15… 𝐴3𝑥5 6 7

SC25

Levels

M
at

ri
x 

Po
w

er
s

𝑝 + 1 × 𝑁𝑛𝑧 𝐿 × 12 bytes < 𝐶

𝑁𝑛𝑧 𝐿 − avg. non-zeros in a level
𝐶 − cache size

A is loaded only once if
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Intel Xeon Platinum 
8368 (Ice Lake)
• 38 cores
• 104 MB cache 

(L2+L3)

SC25

Power value with 
maximum 
performance.
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Matrix power kernel: Performance – Intel Ice Lake
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Avg. Speedup

RACE Baseline
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Matrix power kernel: Performance – Intel Ice Lake
Intel Xeon Platinum 
8368 (Ice Lake)
• 38 cores
• 104 MB cache 

(L2+L3)



0

0,5

1

1,5

2

2,5

3

3,5

4

Avg. Speedup

RACE Baseline

AMD EPYC 7662
• 64 cores
• 288 MB cache 

(L2+L3)

SC25

Matrix power kernel: Performance – AMD Rome 
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RACE - summary

▪ Inner kernel: OpenMP parallel standard SpMV routine

▪ Overhead: BFS & Set up of data structures (approx. ≤ 50 SpMVs)

▪ Parameters: Power (pm), Available Cache Size, Max. recursion depth

▪ Cache size→max. polynomial degree (pm)
▪ Larger caches→ larger pm→ better performance

▪ Polynomial degree higher than pm→ Computation in chunks of pm

▪ No loss of accuracy!
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RACE – MPK applications

▪ Exponential Integrators → Polynomial approximations

▪ s-step Krylov methods (CA-GMRES)

▪ Polynomial preconditioning

▪ Algebraic Multigrid smoothers
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Hands-On:

MPK with RACE
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# include <RACE/interface.h>

RACE::dist k = RACE::POWER;
Nt = omp_get_num_threads();
RACE::Interface race (Nr, Nt, k, rowPtr, col );

//power value; here 4
int pm = 4 ;
//cache size in bytes; here 30 MB
double C = 30*1024*1024;
//perform pre-processing, find levels
race.RACEColor(pm, C);

int *perm, * invPerm , permLen=Nr;
race.getPerm(&perm, &permLen) ;
race.getInvPerm(&invPerm, &permLen) ;
//permute matrix and vector data structures
permute (perm, invPerm) ;

Using RACE struct functionArg
{
//user-defined struct for input and output
//arguments of the call-back function
int Nr;
. . .

};

//user-defined call-back function
void foo(int row_s, int row_e, int pow, void * voidArg)
{
functionArg * arg = (functionArg *) voidArg;
. . .

}

functionArg* args = new functionArg;
//fill args
args->Nr = 1000;
. . .

void* voidArgs = (void*) args;
int foo_id = race.registerFunction(&foo, voidArgs, pm);
race.executeFunction(foo_id);

Pre-processing Processing
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Neumann polynomial apply

𝑤 = 𝐼 − 𝐿 𝑘𝐴 𝐼 − 𝑈 𝑘𝑣

𝑡1 = 𝐼 − 𝑈 𝑘𝑣

𝑡2 = 𝐴𝑡1

𝑤 = 𝐼 − 𝐿 𝑘𝑡2

Cache blocking

Cache blocking

Can we do better?
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Neumann polynomial apply

𝑤 = 𝐼 − 𝐿 𝑘𝐴 𝐼 − 𝑈 𝑘𝑣

𝑡1 = 𝐼 − 𝑈 𝑘𝑣

𝑡2 = 𝐴𝑡1 = 𝐿 + 𝑈 𝑡1

𝑤 = 𝐼 − 𝐿 𝑘𝑡2

Cache blocking

Total power = 2𝑘 + 1
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RACE: Backup
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MPK – existing caching approaches

▪ Huber et al.: Graph-based higher-order time integration of PDEs1

▪ “Geometrical approach” based on matrix bandwidth

▪ Works for 2D stencil matrices → Runs into problem for 3D and/or unstructured 
matrices

▪ Mohiyuddin et al.: Minimizing communication in sparse matrix solvers2

▪ “Domain decomposition” of underlying graph 

▪ Requires “ghosting” → Indirect accesses or redundant copies of the matrix entries →
Scalability!!

→ Exploit level structure in RACE for cache blocking!

1Huber et al., 2021. Graph-based multi-core higher-order time integration of linear autonomous partial differential equations. J. Comput. Sci. DOI:10.1016/j.jocs.2021.101349

2Mohiyuddin et al., 2009. Minimizing communication in sparse matrix solvers. In Proceedings of the SC’09. DOI:10.1145/1654059.1654096

RACE
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RACE MPK – First Implementation

Intel Xeon Gold 6248
• 1 Socket (20c)

pwtk matrix
• 𝑁𝑟 = 217,918
• 𝑁𝑛𝑧 = 11,634,424

pwtk matrix

Memory trafficPerformance

SpMV
Roofline

SpMV Roofline

MPK 
Roofline
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RACE MPK – Performance Problem Identified

▪ Scheme seems to work (reduces data traffic) – at least for pwtk

▪ But: Performance !!!!

▪ Analysis of hardware performance counters (LIKWID) for pwtk matrix:  
INSTR_RETIRED_ANY up 2x for level based SpMV!

→ Frequent thread syncronisations! 

Reason: After each level threads sync!

Measures:
→ Reduce #levels by level aggregation („LG“)
→ Global sync. replaced by point-to-point sync. („p2p“)

LG
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RACE MPK – LG optimization

pwtk matrix

Memory trafficPerformance

SpMV
Roofline

Intel Xeon Gold 6248
• 1 Socket (20c)

pwtk matrix
• 𝑁𝑟 = 217,918
• 𝑁𝑛𝑧 = 11,634,424
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RACE MPK – LG+p2p optimization

pwtk matrix

Memory trafficPerformance

☺

SpMV
Roofline

Intel Xeon Gold 6248
• 1 Socket (20c)

pwtk matrix
• 𝑁𝑟 = 217,918
• 𝑁𝑛𝑧 = 11,634,424

Performance Engineering for Sparse Linear Solvers 124



SC25

Outlook: Distributed-Memory SpMV

Slides courtesy of Dane Lacey, NHR@FAU
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SpMV Example
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A = x = y =
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SpMV Example

=*
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Distributed SpMV Example

3 5 3

2 1 1 1

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2

1

3

2

8

9

0

1

1

MPI Proc. 3

MPI Proc. 2

MPI Proc. 1

MPI Proc. 0

The x vector is also “partitioned”, to 
reduce redundant data across 

processes
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Distributed SpMV Example

1 5 5

1 1
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MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

*

*

*

*
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Distributed SpMV Example

3 5 3

2 1 1 1

1 5 5
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2 9 2 3

4 1 3 2

2 7 3
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MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

lo
ca

l x

lo
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l A

lo
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l x

lo
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l A

lo
ca

l x

lo
ca

l A

lo
ca

l x

lo
ca

l A
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Distributed SpMV Example

1

3

2
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1

1

MPI Proc. 0

MPI Proc. 1

MPI Proc. 2

MPI Proc. 3

3 5 3

2 1 1 1

1 5 5

1 1

2 9 2 3

4 1 3 2

2 7 3

1 2
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Distributed SpMV Example
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Distributed SpMV Example
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Distributed SpMV Example
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Distributed SpMV Example
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Outlook: 
Cache-Blocking Distributed-Memory MPK
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Proc 1

Proc 0

Distributed MPK
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Proc 0

Distributed MPK

Computing 𝐴𝑥 on Proc 0 
requires neighbors of Proc 0.

How about computing 𝐴𝑝𝑥?

Performance Engineering for Sparse Linear Solvers 138



SC25

Proc 0

Distributed MPK

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥
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Proc 0

Distributed MPK

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

To compute 𝐴2𝑥 we need 
𝐴𝑥 on the neighbors.

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥
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Proc 0

Distributed MPK

To compute 𝐴2𝑥 we need 
𝐴𝑥 on the neighbors.

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥
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Proc 0

Distributed MPK

To compute 𝐴3𝑥 we need 
𝐴2𝑥 on the neighbors.

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥 𝐴2𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥 𝐴𝑥

𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥

𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥

𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥

𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥 𝐴3𝑥

In general, to compute 
𝐴𝑝𝑥 we need 𝑝 neighbors.
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Distributed MPK

* D. Lacey, C. Alappat, F. Lange, G. Hager, and G. Wellein: Cache Blocking of Distributed-Memory Parallel Matrix 
Power Kernels, to be submitted.

It works!

No redundant work 
and/or extra 
communication 
required, see upcoming 
paper.*
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Tutorial conclusions

• Memory bandwidth limitations are ubiquitous in sparse linear solvers

• SpMV performance depends on the storage format

• Roofline is an indispensable tool for performance analysis

• Time to solution is a fusion of flop/s performance and fast 
convergence

• Matrix powers can be optimized for better cache reuse
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Appendix
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Performance Engineering for Linear Solvers

This tutorial covers code analysis, performance modeling, and optimization for linear 
solvers on CPU and GPU nodes. Performance Engineering is often taught using simple 
loops as instructive examples for performance models and how they can guide 
optimization; however, full, preconditioned linear solvers comprise multiple back-to-back 
loops enclosed in an iteration scheme that is executed until convergence is achieved. 
Consequently, the concept of “optimal performance” has to account for both hardware 
resource efficiency and iterative solver convergence. We convey a performance 
engineering process that is geared towards linear iterative solvers. After introducing basic 
notions of hardware organization and storage for dense and sparse data structures, we 
show how the Roofline performance model can be applied to such solvers in predictive and 
diagnostic ways and how it can be used to assess the hardware efficiency of a solver, 
covering important corner cases such as pure memory boundedness. Then we advance to 
the structure of preconditioned solvers, using the Conjugate Gradient Method (CG) 
algorithm as a leading example. Hotspots and bottlenecks of the complete solver are 
identified followed by the introduction of advanced performance optimization techniques 
like preconditioning and cache blocking.
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