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The plan

▪ An old idea that stuck: 

The stored-program computer

▪ Plowing the fields: 

CPU cores, chips, and nodes

▪ Brute-forcing the game: GPUs

▪ Shooting for the stars: 

High-performance networks and 

clusters

▪ Doing “work” in parallel – easy as 𝜋?

▪ The rule of threads: OpenMP

▪ We need to talk: MPI

▪ Some “cool” science
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Image: NHR@FAU
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A word about the NHR Alliance and NHR@FAU

▪ Powerful HPC infrastructure

▪ Expert user support and user training

▪ NHR@FAU fields of expertise within NHR

▪ Atomistic Simulations

▪ Performance Engineering & Tools

▪ AI Research

▪ Funding 2021-2030: 62.5 Mio. € p.a.

▪ ~ 7 Mio. € per center (state+federal)

▪ hardware / infrastructure

▪ operational costs 

▪ advanced user support & training 

https://www.nhr-verein.de/en/



An old idea that stuck: 
The stored-program computer



The stored-program computer
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Stored-program computer

Modern CPU core

66 0f 58 c1
(addpd xmm1,xmm2)
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Fancy features for faster execution 
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Fancy features for faster execution 

Pipelining: Instruction execution in multiple steps
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Fancy features for faster execution 
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Fancy features for faster execution 

Simultaneous Multi-Threading:

Multiple instruction sequences in parallel



Plowing the fields: 
CPU cores, chips, and nodes

Image: Intel



Beyond the core: The cache hierarchy

You can either build a

small and fast memory

or a

large and slow memory

Memory
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Beyond a single core: multicore and multisocket
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Brute-forcing the game: GPUs

Image: NVIDIA



Why GPUs?

CPUs spend die area on

▪ … fancy core features to make 

serial code fast 

▪ … lots of cache to mitigate 

memory delays

GPUs spend die area on

▪ … execution resources to boost 

computational performance
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NVIDIA H100 SXM5 (80 billion transistors)
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A compute node with GPUs
PCIe

CPU 1

CPU 0

GPU 0

GPU 7



Shooting for the stars: 
High-performance networks and clusters

Image: NHR@FAU



Overall cluster structure
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Network structures
Bus

2D torus

Fat tree Dragonfly
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Doing “work” in parallel – easy as 𝜋?



What is “performance”?

Performance metric: 

𝑃 =
Work

Time

„flops“ (+ - * /)

lattice points

“runs”

“Solving the problem”

...

Speedup with 𝑛
workers: 

𝑆(𝑛) =
𝑃(𝑛)

𝑃(1)
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Theoretical peak performance of a supercomputer 

𝑃 = 158976 × 48 × 2,2 × 32
GFlops

s
≈ 537

PFlops

s

CPUs 

(nodes)

Cores per CPU

109 clock cycles 

per second (GHz)

FP64 operations 

per cycle and core

“Fugaku” – #1 in the world from 2020-2022

Still #7 today (top500.org/)

https://top500.org/
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Can everything be parallelized?
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Other impediments
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Getting down to it – calculating 𝜋 with multiple threads

𝜋 = න

0

1
4

1 + 𝑥2
d𝑥

double pi,dx,sum;
int N=10000000;
pi = 0.; dx = 1.0/N; sum = 0.;
#pragma omp parallel
{
#pragma omp for reduction(+:sum)

}
pi = sum * dx;

for(int i=0; i<N; ++i) {
double x = dx*(i+0.5);
sum += 4./(1. + x*x);

}
dx
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Performance and scalability: food for thought

▪ Serial performance ≈ 0.93 Git/s

▪ Good speedup (𝑆 𝑛 ≈ 𝑛) at 

low thread counts

▪ Some loss of scalability at high

thread counts

▪ Significant statistical variations 

at larger thread counts

median
(10 runs)

min

max

Intel Xeon®

Platinum 8470



https://www.openmp.org/

The rule of threads: OpenMP

https://www.openmp.org/
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OpenMP fork-join model

Used mainly via compiler directives…

… and some API functions …

… and some environment variables:

initial

thread
thread thread

serial 

execution
fork

join

serial 

execution

parallel 

execution

barrier

parallel region

fork

join

thread ids 0 1 2

parallel 

execution

serial 

execution

thread

3

#pragma omp <directive> [<clause>[, <clause>[...]]]

int thread_id = omp_get_thread_num();

$ gcc –fopenmp code.c

$ OMP_NUM_THREADS=4 ./a.out barrier
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OpenMP “Hello World”

#include <stdio.h>

#include <omp.h>

int main(int argc, char *argv[])

{

printf("Sequential part\n");

#pragma omp parallel

{

printf(“Thread %d of %d\n",

omp_get_thread_num(),

omp_get_num_threads()); 

}

printf("Sequential part again\n");

return 0;

}

$ gcc –fopenmp code.c

$ OMP_NUM_THREADS=4 ./a.out

Sequential part

Thread 1 of 4

Thread 3 of 4

Thread 2 of 4

Thread 0 of 4

Sequential part again

$ OMP_NUM_THREADS=6 ./a.out

Sequential part

Thread 0 of 6

Thread 1 of 6

Thread 5 of 6

Thread 4 of 6

Thread 2 of 6

Thread 3 of 6

Sequential part again
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Sharing the work among threads

#pragma omp parallel
{

#pragma omp for
for (int i = 0; i < n; ++i) {

a[i] = b[i];
}

}

Work is 

spread 

across 

threads 

in team

double sum=0.;
// ...
#pragma omp parallel reduction(+:sum)
{

#pragma omp for
for (int i = 0; i < n; ++i) {

sum += a[i];
}

}

Support for reductions:

#pragma omp parallel
{

#pragma omp for
for (int i = 0; i < n; ++i) {

#pragma omp critical
sum += device_read();

}
}

Critical regions
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Advanced OpenMP: tasking

E *anchor = ... // linked list
#pragma omp parallel
{

#pragma omp single
{

for(E *ptr=anchor; ptr!=NULL; ptr=ptr->next) {
#pragma omp task
do_stuff_with_data(ptr->payload);

}
} // <-- implicit barrier here

}

One 

thread fills 

“queue of 

tasks”

Other threads waiting and 

working on tasks in queue  
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Advanced OpenMP: device offloading

double pi,dx,sum;
int N=10000000;
pi = 0.; dx = 1.0/N; sum = 0.;
#pragma omp target loop reduction(+:sum)

pi = sum * dx;

for(int i=0; i<N; ++i) {
double x = dx*(i+0.5);
sum += 4./(1. + x*x);

}

Offload loop to 

GPU
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OpenMP: What we have left out

▪ Data scoping (thread-private/shared data structures)

▪ Loop scheduling (which thread does what)

▪ Advanced synchronization (atomics, locks)

▪ Advanced tasking (taskloops, dependencies)

▪ SIMD support (vectorizing loops and functions)

▪ Advanced offloading (asynchronous execution, tasks, dependencies)

▪ Execution modalities (thread affinity, memory affinity)

▪ ...



Message Passing Interface (MPI)
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The message passing paradigm

Distributed-memory architecture:

▪ Each process(or) can only access its 

dedicated address space.

▪ No global shared address space

▪ Data exchange and communication 

between processes is done by 

explicitly passing messages through a 

communication network 

Message passing library:

▪ Should be flexible, efficient and portable

▪ Hide communication, hardware and 

software layers from application developer

Message

Application

MPI

Drivers

IB, Eth, shmem,…

Hard-

ware
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The message passing paradigm

▪ Message Passing Interface (MPI): Widely accepted

standard in HPC

▪ The program is written in a sequential language

(Fortran/C[++]), but …

▪ Data exchange between processes:

• Send/receive messages via MPI library calls

• No automatic workload distribution

▪ The MPI standard

• MPI forum – defines MPI standard/library components

• http://www.mpi-forum.org/

▪ Latest version: MPI 5.0, Release 05.06.2025 (libraries ?)

▪ Libraries: MPICH, mvapich, OpenMPI, … and Intel, Cray, HP,…

http://www.mpi-forum.org/
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Parallel execution in MPI

▪ Processes run throughout program execution

▪ MPI Point-to-point communication:

▪ between pairs of tasks/processes

▪ MPI Collective communication:

▪ between all processes or a subgroup

▪ barrier, reductions, scatter/gather

▪ Clean shutdown by MPI

+

Program startup

Program shutdown
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Point-to-Point Communication

▪ Procedure (C/C++ binding, Fortran 

binding, Fortran 2008 binding)

▪ Message data

▪ Buffer (address)

▪ Datatype (basic or derived?)

▪ Count (number of elements, not bytes)

▪ Message envelope

▪ Source

▪ Destination

▪ Tag

It is a communication between two processes where a sender (source 

process) sends message to a receiver (destination process).

MPI datatype C datatype

MPI_INT int

MPI_UNSIGNED unsigned int

MPI_FLOAT float

MPI_DOUBLE double

MPI_C_COMPLEX float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_BOOL _Bool

MPI_CHAR char

and many more    ->    https://www.mpi-forum.org/docs/

Basic Datatypes (C/C++)
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MPI_SEND and MPI_RECV

▪ MPI_Send C/C++ binding:

▪ MPI_Recv C/C++ binding:

#include <mpi.h>
int MPI_Send(const void *buf, int count, MPI_Datatype datatype, 
int dest,int tag, MPI_Comm comm)

▪ buf: address of the first entry of the buffer to be sent

▪ count: number of elements to be sent (note that it is not bytes!)

#include <mpi.h>
int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
             int source,int tag, MPI_Comm comm,

MPI_Status *status)
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Single-round ping-pong in C
#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) {

int ierr, irank, nrank;

MPI_Status status;

double d=0.0;

ierr=MPI_Init(&argc,&argv);

ierr=MPI_Comm_rank(MPI_COMM_WORLD,&irank);

ierr=MPI_Comm_size(MPI_COMM_WORLD,&nrank);

if(irank==0) d=100.0;

if(irank==1) d=200.0;

printf("BEFORE: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d);

if(irank==0) {

    MPI_Send(&d,1,MPI_DOUBLE,1,11,MPI_COMM_WORLD);

    MPI_Recv(&d,1,MPI_DOUBLE,1,22,MPI_COMM_WORLD,&status);

}

else if(irank==1) {

    MPI_Send(&d,1,MPI_DOUBLE,0,22,MPI_COMM_WORLD);

    MPI_Recv(&d,1,MPI_DOUBLE,0,11,MPI_COMM_WORLD,&status);

}

printf("AFTER: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d);

ierr=MPI_Finalize();

}

A deadlock is a scenario in which a 

process is trying to exchange data to 

another process but there is no match, 

e.g. it is ready to send a data but the 

other process is not and will not be 

prepared to accept or the opposite 

case, i.e. the process is waiting to 

receive but the other is not sending and 

will not send a matching message.

rank 0

rank 1
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How to compile and run an MPI program

▪ MPI implementations provide wrappers to the compilers, e.g. mpicc

▪ To execute the program, one should use startup wrappers such as 

mpirun, mpiexec, … or a job scheduler wrapper like srun

$ mpicc pingpong.c -o pingpong

$ mpirun -np 2 ./pingpong
BEFORE: nrank,irank,d =     2    1   200.0
BEFORE: nrank,irank,d =     2    0   100.0
AFTER:  nrank,irank,d =     2    0   100.0
AFTER:  nrank,irank,d =     2    1   100.0
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Example: Shift operation across a chain of processes

▪ Simplistic send/recv

▪ pairing is not reliable

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

Rank 1Rank 0 Rank 2 Rank 3

circular chain

//my left neighbor
left=(rank-1)%size;
//my right neighbor
right=(rank+1)%size;
MPI_Send(sendbuf,n,type,right,tag,comm);
MPI_Recv(recvbuf,n,type,left,tag,comm,status);
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Serialization: Loss of efficiency

time

Send

Recv

Send Recv

Send Recv

3

2

1

0

Rank

▪ Ring shift communication pattern: non-circular shifts

• No concern over deadlock

• Serialization

▪ MPI_Send with rendezvous protocol

▪ MPI_Ssend
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Calculating PI with Monte Carlo

▪ The quarter circle in the first quadrant with origin at 

(0,0) and radius 1 has an area of π/4. We look at the 

random number pairs in [0, 1] × [0, 1]. The probability 

that such a point lies inside the quarter circle is π/4, 

so given enough statistics we are able to calculate π 

using this “Monte Carlo” method.

one_over_rand_max=1.0/(double)RAND_MAX;

count=0.0;

for(i=0; i<nn; ++i) {

x=rand_r(&seed)*one_over_rand_max;

y=rand_r(&seed)*one_over_rand_max;

if(x*x+y*y <1.0) ++count;

}

pi=4.0*count/(double)nn;
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Calculating PI with Monte Carlo
nn=pow(10,9);

n_local=nn/nrank;
if(irank<nn%nrank) n_local+=1; //doing one more point if nrank is not a divisor (factor) of nn

one_over_rand_max=1.0/(double)RAND_MAX;

seed=2+irank;

count=0.0;

for(i=0; i<n_local; ++i) {

    x=rand_r(&seed)*one_over_rand_max;

    y=rand_r(&seed)*one_over_rand_max;

    if(x*x+y*y <1.0) ++count;

}

if(0==irank) {

    //This is rank=0 and it receives `count' from all other ranks

    for(i=1; i<nrank; ++i) {

        MPI_Recv(&val,1,MPI_DOUBLE,i,0,MPI_COMM_WORLD,&status);

        count+=val;

    }

    pi=4.0*count/(double)nn;

    printf(accuracy: %14.5E\n",fabs(M_PI-pi)/M_PI);

}

else {

    //Every rank except rank=0 should send its `count' to rank=0

    MPI_Send(&count,1,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

}
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What we have left out

▪ Point-to-Point communication

• Communication modes

• Non-blocking

▪ Synchronization

▪ Collective communication

▪ Subcommunicators

▪ Derived types

▪ Parallel I/O

▪ Topology

▪ Shared memory



Cool Science



Unconventional Superconductors (A. Buchheit, U Saarland)

https://youtu.be/D03loILYeTA
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https://youtu.be/D03loILYeTA
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Generative Video Models for Privacy-Preserving Medical AI (B. Kainz, FAU)

Synthetic data sets for AI 

model training

https://github.com/HReynaud/EchoNet-

Synthetic?tab=readme-ov-file

https://github.com/HReynaud/EchoNet-Synthetic?tab=readme-ov-file
https://github.com/HReynaud/EchoNet-Synthetic?tab=readme-ov-file


“I need this – how do I get access?”



The application process for NHR projects at NHR@FAU

Researchers Application

Technical Review

Steering Commitee

Decision

End of Project

External Review

grant

access

final

allocation

Report

Alex

https://nhr.fau.de/

PI at German 

university or U.A.S.

https://nhr.fau.de/
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AI projects in Bavaria

https://www.ki-in-bayern.de/

Researchers at state-funded Bavarian 

universities and universities of applied 

sciences (HAW, TH, and FH) have

free of charge access to these 

current hardware resources via 

BayernKI Wissenschaft:

Focus is on AI research (training, 

methodology), not inference

https://www.ki-in-bayern.de/


Thank you.

https://nhr.fau.de/

https://nhr.fau.de/
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