
Parallel Computing: 
From CPU Core to Supercomputer
Georg Hager and Alireza Ghasemi

Erlangen National High Performance Computing Center (NHR@FAU)

OTH Regensburg

Fakutät Informatik und Mathematik

January 14, 2026



The plan

▪ An old idea that stuck: 

The stored-program computer

▪ Plowing the fields: 

CPU cores, chips, and nodes

▪ Brute-forcing the game: GPUs

▪ Shooting for the stars: 

High-performance networks and 

clusters

▪ Doing “work” in parallel – easy as 𝜋?

▪ The rule of threads: OpenMP

▪ We need to talk: MPI

▪ Some “cool” science

2026-01-14From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi 2

Image: NHR@FAU



2026-01-14 3From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

A word about the NHR Alliance and NHR@FAU

▪ Powerful HPC infrastructure

▪ Expert user support and user training

▪ NHR@FAU fields of expertise within NHR

▪ Atomistic Simulations

▪ Performance Engineering & Tools

▪ AI Research

▪ Funding 2021-2030: 62.5 Mio. € p.a.

▪ ~ 7 Mio. € per center (state+federal)

▪ hardware / infrastructure

▪ operational costs 

▪ advanced user support & training 

https://www.nhr-verein.de/en/



An old idea that stuck: 
The stored-program computer



The stored-program computer

2026-01-14From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi 5

Stored-program computer

Modern CPU core

66 0f 58 c1
(addpd xmm1,xmm2)



2026-01-14 6From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Fancy features for faster execution 

Fetch Instruction 4

from L1I

Decode 

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode 

Instruction 2

Decode 

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode 

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode 

Instruction 2

Decode 

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode 

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode 

Instruction 2

Decode 

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode 

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode 

Instruction 5

Decode 

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

Superscalarity: Multiple instructions per cycle

ti
m

e



2026-01-14 7From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Fancy features for faster execution 

Pipelining: Instruction execution in multiple steps



2026-01-14 8From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Fancy features for faster execution 

A
[0

]
A

[1
]

A
[2

]
A

[3
]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

+

+

+

+

Single Instruction Multiple Data: Multiple operations per instruction



2026-01-14 9From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Fancy features for faster execution 

Simultaneous Multi-Threading:

Multiple instruction sequences in parallel



Plowing the fields: 
CPU cores, chips, and nodes

Image: Intel



Beyond the core: The cache hierarchy

You can either build a

small and fast memory

or a

large and slow memory

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth 

[bytes/s]

Core

2026-01-14From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi 11



2026-01-14 12From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Beyond a single core: multicore and multisocket

L3 group

Chiplet

CPU

I/
O

 d
ie

C
o
m

p
u
te

 n
o
d
e



Brute-forcing the game: GPUs

Image: NVIDIA



Why GPUs?

CPUs spend die area on

▪ … fancy core features to make 

serial code fast 

▪ … lots of cache to mitigate 

memory delays

GPUs spend die area on

▪ … execution resources to boost 

computational performance

2026-01-14From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi 14



2026-01-14 15From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

NVIDIA H100 SXM5 (80 billion transistors)



2026-01-14 16From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

A compute node with GPUs
PCIe

CPU 1

CPU 0

GPU 0

GPU 7



Shooting for the stars: 
High-performance networks and clusters

Image: NHR@FAU



Overall cluster structure

CPU 1

CPU 0 NIC

NIC

CPU 1

CPU 0 NIC

NIC

CPU 1

CPU 0 NIC

NIC

c
o

m
m

u
n

ic
a

ti
o

n
 n

e
tw

o
rk

©
 G

. 
S

h
u
k
lin

2026-01-14From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi 18

https://creativecommons.org/licenses/by-sa/3.0/deed.en


Network structures
Bus

2D torus

Fat tree Dragonfly

2026-01-14From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi 19



Doing “work” in parallel – easy as 𝜋?



What is “performance”?

Performance metric: 

𝑃 =
Work

Time

„flops“ (+ - * /)

lattice points

“runs”

“Solving the problem”

...

Speedup with 𝑛
workers: 

𝑆(𝑛) =
𝑃(𝑛)

𝑃(1)

2026-01-14From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi 21



2026-01-14 22From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Theoretical peak performance of a supercomputer 

𝑃 = 158976 × 48 × 2,2 × 32
GFlops

s
≈ 537

PFlops

s

CPUs 

(nodes)

Cores per CPU

109 clock cycles 

per second (GHz)

FP64 operations 

per cycle and core

“Fugaku” – #1 in the world from 2020-2022

Still #7 today (top500.org/)

https://top500.org/


2026-01-14 23From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Can everything be parallelized?

s p

p

p

s

s

1 core

2 cores

4 cores

10s

4s

4x more 

resources

2.5x 

faster

Gene 

Amdahl 

1967

C
o
m

p
u
te

r 
H

is
to

ry
 M

u
s
e
u
m



2026-01-14 24From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Other impediments

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

Core 1

Core 2

Core 3

Core 4

Communication, synchronization, load imbalance



2026-01-14 25From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Getting down to it – calculating 𝜋 with multiple threads

𝜋 = න

0

1
4

1 + 𝑥2
d𝑥

double pi,dx,sum;
int N=10000000;
pi = 0.; dx = 1.0/N; sum = 0.;
#pragma omp parallel
{
#pragma omp for reduction(+:sum)

}
pi = sum * dx;

for(int i=0; i<N; ++i) {
double x = dx*(i+0.5);
sum += 4./(1. + x*x);

}
dx



2026-01-14 26From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Performance and scalability: food for thought

▪ Serial performance ≈ 0.93 Git/s

▪ Good speedup (𝑆 𝑛 ≈ 𝑛) at 

low thread counts

▪ Some loss of scalability at high

thread counts

▪ Significant statistical variations 

at larger thread counts

median
(10 runs)

min

max

Intel Xeon®

Platinum 8470



https://www.openmp.org/

The rule of threads: OpenMP

https://www.openmp.org/


2026-01-14 28From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

OpenMP fork-join model

Used mainly via compiler directives…

… and some API functions …

… and some environment variables:

initial

thread
thread thread

serial 

execution
fork

join

serial 

execution

parallel 

execution

barrier

parallel region

fork

join

thread ids 0 1 2

parallel 

execution

serial 

execution

thread

3

#pragma omp <directive> [<clause>[, <clause>[...]]]

int thread_id = omp_get_thread_num();

$ gcc –fopenmp code.c

$ OMP_NUM_THREADS=4 ./a.out barrier



2026-01-14 29From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

OpenMP “Hello World”

#include <stdio.h>

#include <omp.h>

int main(int argc, char *argv[])

{

printf("Sequential part\n");

#pragma omp parallel

{

printf(“Thread %d of %d\n",

omp_get_thread_num(),

omp_get_num_threads()); 

}

printf("Sequential part again\n");

return 0;

}

$ gcc –fopenmp code.c

$ OMP_NUM_THREADS=4 ./a.out

Sequential part

Thread 1 of 4

Thread 3 of 4

Thread 2 of 4

Thread 0 of 4

Sequential part again

$ OMP_NUM_THREADS=6 ./a.out

Sequential part

Thread 0 of 6

Thread 1 of 6

Thread 5 of 6

Thread 4 of 6

Thread 2 of 6

Thread 3 of 6

Sequential part again



2026-01-14 30From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Sharing the work among threads

#pragma omp parallel
{

#pragma omp for
for (int i = 0; i < n; ++i) {

a[i] = b[i];
}

}

Work is 

spread 

across 

threads 

in team

double sum=0.;
// ...
#pragma omp parallel reduction(+:sum)
{

#pragma omp for
for (int i = 0; i < n; ++i) {

sum += a[i];
}

}

Support for reductions:

#pragma omp parallel
{

#pragma omp for
for (int i = 0; i < n; ++i) {

#pragma omp critical
sum += device_read();

}
}

Critical regions



2026-01-14 31From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Advanced OpenMP: tasking

E *anchor = ... // linked list
#pragma omp parallel
{

#pragma omp single
{

for(E *ptr=anchor; ptr!=NULL; ptr=ptr->next) {
#pragma omp task
do_stuff_with_data(ptr->payload);

}
} // <-- implicit barrier here

}

One 

thread fills 

“queue of 

tasks”

Other threads waiting and 

working on tasks in queue  



2026-01-14 32From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Advanced OpenMP: device offloading

double pi,dx,sum;
int N=10000000;
pi = 0.; dx = 1.0/N; sum = 0.;
#pragma omp target loop reduction(+:sum)

pi = sum * dx;

for(int i=0; i<N; ++i) {
double x = dx*(i+0.5);
sum += 4./(1. + x*x);

}

Offload loop to 

GPU



2026-01-14 33From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

OpenMP: What we have left out

▪ Data scoping (thread-private/shared data structures)

▪ Loop scheduling (which thread does what)

▪ Advanced synchronization (atomics, locks)

▪ Advanced tasking (taskloops, dependencies)

▪ SIMD support (vectorizing loops and functions)

▪ Advanced offloading (asynchronous execution, tasks, dependencies)

▪ Execution modalities (thread affinity, memory affinity)

▪ ...



Message Passing Interface (MPI)



2026-01-14 35From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

The message passing paradigm

Distributed-memory architecture:

▪ Each process(or) can only access its 

dedicated address space.

▪ No global shared address space

▪ Data exchange and communication 

between processes is done by 

explicitly passing messages through a 

communication network 

Message passing library:

▪ Should be flexible, efficient and portable

▪ Hide communication, hardware and 

software layers from application developer

Message

Application

MPI

Drivers

IB, Eth, shmem,…

Hard-

ware



2026-01-14 36From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

The message passing paradigm

▪ Message Passing Interface (MPI): Widely accepted

standard in HPC

▪ The program is written in a sequential language

(Fortran/C[++]), but …

▪ Data exchange between processes:

• Send/receive messages via MPI library calls

• No automatic workload distribution

▪ The MPI standard

• MPI forum – defines MPI standard/library components

• http://www.mpi-forum.org/

▪ Latest version: MPI 5.0, Release 05.06.2025 (libraries ?)

▪ Libraries: MPICH, mvapich, OpenMPI, … and Intel, Cray, HP,…

http://www.mpi-forum.org/


2026-01-14 37From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Parallel execution in MPI

▪ Processes run throughout program execution

▪ MPI Point-to-point communication:

▪ between pairs of tasks/processes

▪ MPI Collective communication:

▪ between all processes or a subgroup

▪ barrier, reductions, scatter/gather

▪ Clean shutdown by MPI

+

Program startup

Program shutdown



2026-01-14 40From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Point-to-Point Communication

▪ Procedure (C/C++ binding, Fortran 

binding, Fortran 2008 binding)

▪ Message data

▪ Buffer (address)

▪ Datatype (basic or derived?)

▪ Count (number of elements, not bytes)

▪ Message envelope

▪ Source

▪ Destination

▪ Tag

It is a communication between two processes where a sender (source 

process) sends message to a receiver (destination process).

MPI datatype C datatype

MPI_INT int

MPI_UNSIGNED unsigned int

MPI_FLOAT float

MPI_DOUBLE double

MPI_C_COMPLEX float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_BOOL _Bool

MPI_CHAR char

and many more    ->    https://www.mpi-forum.org/docs/

Basic Datatypes (C/C++)



2026-01-14 41From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

MPI_SEND and MPI_RECV

▪ MPI_Send C/C++ binding:

▪ MPI_Recv C/C++ binding:

#include <mpi.h>
int MPI_Send(const void *buf, int count, MPI_Datatype datatype, 
int dest,int tag, MPI_Comm comm)

▪ buf: address of the first entry of the buffer to be sent

▪ count: number of elements to be sent (note that it is not bytes!)

#include <mpi.h>
int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
             int source,int tag, MPI_Comm comm,

MPI_Status *status)



2026-01-14 42From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Single-round ping-pong in C
#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) {

int ierr, irank, nrank;

MPI_Status status;

double d=0.0;

ierr=MPI_Init(&argc,&argv);

ierr=MPI_Comm_rank(MPI_COMM_WORLD,&irank);

ierr=MPI_Comm_size(MPI_COMM_WORLD,&nrank);

if(irank==0) d=100.0;

if(irank==1) d=200.0;

printf("BEFORE: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d);

if(irank==0) {

    MPI_Send(&d,1,MPI_DOUBLE,1,11,MPI_COMM_WORLD);

    MPI_Recv(&d,1,MPI_DOUBLE,1,22,MPI_COMM_WORLD,&status);

}

else if(irank==1) {

    MPI_Send(&d,1,MPI_DOUBLE,0,22,MPI_COMM_WORLD);

    MPI_Recv(&d,1,MPI_DOUBLE,0,11,MPI_COMM_WORLD,&status);

}

printf("AFTER: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d);

ierr=MPI_Finalize();

}

A deadlock is a scenario in which a 

process is trying to exchange data to 

another process but there is no match, 

e.g. it is ready to send a data but the 

other process is not and will not be 

prepared to accept or the opposite 

case, i.e. the process is waiting to 

receive but the other is not sending and 

will not send a matching message.

rank 0

rank 1

p
in

g

p
o

n
g

p
in

g

p
o

n
g



2026-01-14 43From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

How to compile and run an MPI program

▪ MPI implementations provide wrappers to the compilers, e.g. mpicc

▪ To execute the program, one should use startup wrappers such as 

mpirun, mpiexec, … or a job scheduler wrapper like srun

$ mpicc pingpong.c -o pingpong

$ mpirun -np 2 ./pingpong
BEFORE: nrank,irank,d =     2    1   200.0
BEFORE: nrank,irank,d =     2    0   100.0
AFTER:  nrank,irank,d =     2    0   100.0
AFTER:  nrank,irank,d =     2    1   100.0



2026-01-14 46From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Example: Shift operation across a chain of processes

▪ Simplistic send/recv

▪ pairing is not reliable

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

Rank 1Rank 0 Rank 2 Rank 3

circular chain

//my left neighbor
left=(rank-1)%size;
//my right neighbor
right=(rank+1)%size;
MPI_Send(sendbuf,n,type,right,tag,comm);
MPI_Recv(recvbuf,n,type,left,tag,comm,status);



2026-01-14 47From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Serialization: Loss of efficiency

time

Send

Recv

Send Recv

Send Recv

3

2

1

0

Rank

▪ Ring shift communication pattern: non-circular shifts

• No concern over deadlock

• Serialization

▪ MPI_Send with rendezvous protocol

▪ MPI_Ssend



2026-01-14 48From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Calculating PI with Monte Carlo

▪ The quarter circle in the first quadrant with origin at 

(0,0) and radius 1 has an area of π/4. We look at the 

random number pairs in [0, 1] × [0, 1]. The probability 

that such a point lies inside the quarter circle is π/4, 

so given enough statistics we are able to calculate π 

using this “Monte Carlo” method.

one_over_rand_max=1.0/(double)RAND_MAX;

count=0.0;

for(i=0; i<nn; ++i) {

x=rand_r(&seed)*one_over_rand_max;

y=rand_r(&seed)*one_over_rand_max;

if(x*x+y*y <1.0) ++count;

}

pi=4.0*count/(double)nn;



2026-01-14 49From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Calculating PI with Monte Carlo
nn=pow(10,9);

n_local=nn/nrank;
if(irank<nn%nrank) n_local+=1; //doing one more point if nrank is not a divisor (factor) of nn

one_over_rand_max=1.0/(double)RAND_MAX;

seed=2+irank;

count=0.0;

for(i=0; i<n_local; ++i) {

    x=rand_r(&seed)*one_over_rand_max;

    y=rand_r(&seed)*one_over_rand_max;

    if(x*x+y*y <1.0) ++count;

}

if(0==irank) {

    //This is rank=0 and it receives `count' from all other ranks

    for(i=1; i<nrank; ++i) {

        MPI_Recv(&val,1,MPI_DOUBLE,i,0,MPI_COMM_WORLD,&status);

        count+=val;

    }

    pi=4.0*count/(double)nn;

    printf(accuracy: %14.5E\n",fabs(M_PI-pi)/M_PI);

}

else {

    //Every rank except rank=0 should send its `count' to rank=0

    MPI_Send(&count,1,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

}



2026-01-14 50From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

What we have left out

▪ Point-to-Point communication

• Communication modes

• Non-blocking

▪ Synchronization

▪ Collective communication

▪ Subcommunicators

▪ Derived types

▪ Parallel I/O

▪ Topology

▪ Shared memory



Cool Science



Unconventional Superconductors (A. Buchheit, U Saarland)

https://youtu.be/D03loILYeTA

2026-01-14From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi 52

https://youtu.be/D03loILYeTA


2026-01-14 53From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

Generative Video Models for Privacy-Preserving Medical AI (B. Kainz, FAU)

Synthetic data sets for AI 

model training

https://github.com/HReynaud/EchoNet-

Synthetic?tab=readme-ov-file

https://github.com/HReynaud/EchoNet-Synthetic?tab=readme-ov-file
https://github.com/HReynaud/EchoNet-Synthetic?tab=readme-ov-file


“I need this – how do I get access?”



The application process for NHR projects at NHR@FAU

Researchers Application

Technical Review

Steering Commitee

Decision

End of Project

External Review

grant

access

final

allocation

Report

Alex

https://nhr.fau.de/

PI at German 

university or U.A.S.

https://nhr.fau.de/


2026-01-14 56From CPU Core to Supercomputer  |  G. Hager and A. Ghasemi

AI projects in Bavaria

https://www.ki-in-bayern.de/

Researchers at state-funded Bavarian 

universities and universities of applied 

sciences (HAW, TH, and FH) have

free of charge access to these 

current hardware resources via 

BayernKI Wissenschaft:

Focus is on AI research (training, 

methodology), not inference

https://www.ki-in-bayern.de/


Thank you.

https://nhr.fau.de/

https://nhr.fau.de/

	Folie 1: Parallel Computing:  From CPU Core to Supercomputer Georg Hager and Alireza Ghasemi Erlangen National High Performance Computing Center (NHR@FAU)
	Folie 2: The plan
	Folie 3: A word about the NHR Alliance and NHR@FAU
	Folie 4: An old idea that stuck:  The stored-program computer 
	Folie 5: The stored-program computer
	Folie 6: Fancy features for faster execution 
	Folie 7: Fancy features for faster execution 
	Folie 8: Fancy features for faster execution 
	Folie 9: Fancy features for faster execution 
	Folie 10: Plowing the fields:  CPU cores, chips, and nodes 
	Folie 11: Beyond the core: The cache hierarchy
	Folie 12: Beyond a single core: multicore and multisocket
	Folie 13: Brute-forcing the game: GPUs  
	Folie 14: Why GPUs?
	Folie 15: NVIDIA H100 SXM5 (80 billion transistors)
	Folie 16: A compute node with GPUs
	Folie 17: Shooting for the stars:  High-performance networks and clusters 
	Folie 18: Overall cluster structure
	Folie 19: Network structures
	Folie 20: Doing “work” in parallel – easy as 𝜋?  
	Folie 21: What is “performance”?
	Folie 22: Theoretical peak performance of a supercomputer 
	Folie 23: Can everything be parallelized?
	Folie 24: Other impediments
	Folie 25: Getting down to it – calculating 𝜋 with multiple threads
	Folie 26: Performance and scalability: food for thought
	Folie 27: The rule of threads: OpenMP
	Folie 28: OpenMP fork-join model
	Folie 29: OpenMP “Hello World”
	Folie 30: Sharing the work among threads
	Folie 31: Advanced OpenMP: tasking
	Folie 32: Advanced OpenMP: device offloading
	Folie 33: OpenMP: What we have left out
	Folie 34: Message Passing Interface (MPI)
	Folie 35: The message passing paradigm
	Folie 36: The message passing paradigm
	Folie 37: Parallel execution in MPI
	Folie 40: Point-to-Point Communication
	Folie 41: MPI_SEND and MPI_RECV
	Folie 42: Single-round ping-pong in C
	Folie 43: How to compile and run an MPI program
	Folie 46: Example: Shift operation across a chain of processes
	Folie 47: Serialization: Loss of efficiency
	Folie 48: Calculating PI with Monte Carlo
	Folie 49: Calculating PI with Monte Carlo
	Folie 50: What we have left out
	Folie 51: Cool Science
	Folie 52: Unconventional Superconductors (A. Buchheit, U Saarland)
	Folie 53: Generative Video Models for Privacy-Preserving Medical AI (B. Kainz, FAU)
	Folie 54: “I need this – how do I get access?”
	Folie 55: The application process for NHR projects at NHR@FAU
	Folie 56: AI projects in Bavaria
	Folie 57: Thank you.  https://nhr.fau.de/ 

