- %

Friedrich-Alexander-Universitat
E Erlangen-Nirnberg

OTH Regensburg
Fakutat Informatik und Mathematik

January 14, 2026

/
-

Z& 4

Parallel Computing:
From CPU Core to Supercomputer

Georg Hager and Alireza Ghasemi

Erlangen National High Performance Computing Center (NHR@FAU)



The plan

= An old idea that stuck:
The stored-program computer

* Plowing the fields:
CPU cores, chips, and nodes

» Brute-forcing the game: GPUs

= Shooting for the stars:
High-performance networks and
clusters

= Doing “work” in parallel — easy as n?
= The rule of threads: OpenMP

= We need to talk: MPI

= Some “cool” science

Image: NHR@F,&‘yi
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A word about the NHR Alliance and NHR@FAU

= Funding 2021-2030: 62.5 Mio. € p.a.
= ~ 7 Mio. € per center (state+federal)
https://www.nhr-verein.de/en/ =  hardware / infrastructure
® = operational costs
® seriin = advanced user support & training

Paderborn G?ttinge” @ N|;|_R/©/|EAU

Onachen w = Powerful HPC infrastructure

Mainz@© = EXxpert user support and user training
Darmstadt @

® Erlangen- = NHR@FAU fields of expertise within NHR
Nurnberg - Atomistic Simulations

Performance Engineering & Tools
= Al Research

Karlsruhe
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An old idea that stuck:
| The stored-program computer




The stored-program computer
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Fancy features for faster execution

Superscalarity: Multiple instructions per cycle

Fetch Instruction 1
from L1l

Fetch Instruction 5 Decode

time

from L1l Instruction 1

~ -

Fetch Instruction 9 Decode
from L1l Instruction 5

-

Fetch Instruction 13 Decode
from L1l Instruction 9
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Fancy features for faster execution

Pipelining: Instruction execution in multiple steps

1 2 3 4 5 N N+1 N+2 N+3 N+4
Cycle
Separate B(1)| | B(2)| |B(3)| |B(4)| | B(5) B(N) || -
mant./exp. C(L)| | c(2)] | Cc(3)| |c(a) |C(5) C(N) Wind-down
Multiply B(L)| |B(2)| |B(3)]| | B(4) B-1)| | B(N)
mantissas c(1l) c(2) C(3) Cc(4) c (N-1) C(N)
Add B(1l)| | B(2)| | B(3) B(N-2)| |B(N-1)| | B(N)
exponents Cc(1l) c(2) C(3) c{N-2) |cin-1) C(N)
Normalize A A A
result AL A2) ~N-3) |(v-2) | -1y | BOO
Insert L Wind-up N A A A A
sign [ = (1) (N-4)| | (N-3) | (N-2)| | (N-1) | RO
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Fancy features for faster execution

Single Instruction Multiple Data: Multiple operations per instruction
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Fancy features for faster execution

Simultaneous Multi-Threading:
Multiple instruction sequences in parallel
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Beyond the core: The cache hierarchy

You can either build a
SEIEE  Bandwidth
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1011
10° 10°

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 11



Beyond a single core: multicore and multisocket
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_| Brute-forcing the game: GPUs

Image: NVIDIA



Why GPUs?

CPUs spend die area on

= ... fancy core features to make
serial code fast

= ... lots of cache to mitigate
memory delays

GPUs spend die area on

= .. execution resources to boost
computational performance

Control

ALU

ALU

CPU

GPU

ALU

ALU
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NVIDIA H100 SXMS5 (80 billion transistors)
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A compute node with GPUs

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

16



Friedrich-Alexander-Universitat
N H R FAU Erlangen-Nirnberg
LY/ )\

Shooting for the stars:
High-performance networks and clusters
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Overall cluster structure

communication network
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Doing “work” in parallel — easy as n?




What is “performance™?

Performance metric:

B Work /

Time

P

<

.

SJlops® (+-*/)
lattice points
“runs”

“Solving the problem’

s

Speedup with n
workers:

P(n)
P(1)

S(n) =
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Theoretical peak performance of a supercomputer

“Fugaku” — #1 in the world from 2020-2022
Still #7 today (top500.0rg/)

10° clock cycles FP64 operations e | |
per second (GHz) per cycle and core .

Cores per CPU
CPUs
(nodes) I\
GFlops PFlops

P = 158976 X 48 x 2,2 X 32 - ~ 537 -
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Can everything be parallelized?

1 core

2 cores

4x more 4 cores
resources

e

n %) n
o
- o
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Computer History Museum

2.5X
\ / 10s
Y4 faster
4s
From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 23



Other impediments

Communication, synchronization, load imbalance

Core 1

Core 2

Core 3

Core 4
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Getting down to it — calculating = with multiple threads
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double pi,dx,sum;
int N=10000000;
pi = 0.; dx = 1.0/N; sum = O.;
#pragma omp parallel
{
#pragma omp for reduction(+:sum)
for(int i=0; i<N; ++i) {
double x = dx*(i+0.5);
sum += 4./(1. + Xx*X);
}
}

pi = sum * dx;
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Performance and scalability: food for thought

: : 50 ' | ' | ' |
= Serial performance =~ 0.93 Git/s

- median @
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The rule of threads: OpenMP



https://www.openmp.org/

OpenMP fork-join model

Used mainly via compiler directives...

#pragma omp <directive> [<clause>[, <clause>[...]]]

initial thread thread thread
. . thread
serial
. execution
... and some API functions ... fork
llel
int thread id = omp get thread num() ; e&ii&m
barrier w 4
... and some environment variables: . join _
serial parallel region
execution fork
$ gcc —fopenmp code.c
parallel
$ OMP_NUM_THREADS=4 . /a.Out execution barrier v v v
serial join
execution
threadids O 1 2 3
2026-01-14 28
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OpenMP “Hello World”

#include <stdio.h> $ gcc —fopenmp code.c
#include <omp.h> $ OMP_NUM THREADS=4 ./a.out
Sequential part
int main(int argc, char *argv[]) Thread 1 of 4
{ Thread 3 of 4
printf ("Sequential part\n") ; Thread 2 of 4
Thread 0 of 4
#pragma omp parallel Sequential part again
{ $ OMP_NUM THREADS=6 ./a.out
printf (“Thread %d of %d\n", Sequential part
omp get thread num(), Thread 0 of 6
omp get num threads()) ; Thread 1 of 6
} Thread 5 of 6
printf ("Sequential part again\n") ; Thread 4 of 6
return O; Thread 2 of 6
} Thread 3 of 6

Sequential part again
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Sharing the work among threads

?pragma omp parallel Support for reductions:

Work is -0 -
#pragma omp for spread (jsuble sum=0. ;

for (int i = 0; i < n; ++i .« o
g - blil: ) 1 across #pragma omp parallel reduction(+:sum)
ali] = b[il; threads {
} g in team #pragma omp for
for (int i = 0; 1 < n; ++1i) {
sum += af[i];
Critical regions } }

#pragma omp parallel
{
#pragma omp for
for (int i = 0; i < n; ++1i) {
#pragma omp critical
sum += device_read();
}
}
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Advanced OpenMP: tasking

E *anchor = ... // linked list

#pragma omp parallel
{

#pragma omp single

{
for(E *ptr=anchor; ptr!=NULL; ptr=ptr->next) { One
#pragma omp task thread fills
do_stuff_with_data(ptr->payload); “queue of
} tasks”
} // <-- implicit barrier here /

}

Other threads waiting and
working on tasks in queue

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14
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Advanced OpenMP: device offloading

double pi,dx,sum;

int N=10000000;

pi = 0.; dx = 1.0/N; sum = O.;

#pragma omp target loop reduction(+:sum)

for(int i=0; i<N; ++i) {
double x = dx*(i+0.5);
sum += 4./(1. + x*x);

}

pi = sum * dx; Offload loop to
GPU
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OpenMP: What we have left out

= Data scoping (thread-private/shared data structures)

= Loop scheduling (which thread does what)

= Advanced synchronization (atomics, locks)

= Advanced tasking (taskloops, dependencies)

= SIMD support (vectorizing loops and functions)

= Advanced offloading (asynchronous execution, tasks, dependencies)
= Execution modalities (thread affinity, memory affinity)
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Message Passing Interface (MPI)




The message passing paradigm

Distributed-memory architecture: P P P P P
c c c c C
= Each process(or) can only access its | Message - ' ' '
dedicated address space. Ml ™M ) M
[N ] [N~ ] [N I ] NI

= No global shared address space

» Data exchange and communication Communication netv'ork
between processes Is done by p———
explicitly passing messages through a
communication network

MPI

Message passing library:
= Should be flexible, efficient and portable

= Hide communication, hardware and
software layers from application developer
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The message passing paradigm

= Message Passing Interface (MPI): Widely accepted
standard in HPC

= The program is written in a sequential language
(Fortran/C[++]), but ...

= Data exchange between processes:
- Send/receive messages via MPI library calls
- No automatic workload distribution

= The MPI standard

- MPI forum — defines MPI standard/library components
- http://www.mpi-forum.org/

= Latest version: MPI 5.0, Release 05.06.2025 (libraries ?)
= Libraries: MPICH, mvapich, OpenMPI, ... and Intel, Cray, HP,...
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Parallel execution in MPI

= Processes run throughout program execution
Program startup

= MPI Point-to-point communication:
= pbetween pairs of tasks/processes

= MPI Collective communication:
= petween all processes or a subgroup
= parrier, reductions, scatter/gather

< o —

v vV v Vv W " Cleanshutdown by MPI
Program shutdown

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14
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Point-to-Point Communication

It is @ communication between two processes where a sender (source
process) sends message to a receiver (destination process).

= Procedure (C/C++ binding, Fortran Basic Datatypes (C/C++)

binding, Fortran 2008 binding)

= Message data MPLINT int
= Buffer (address) MPI_UNSIGNED unsigned int
= Datatype (basic or derived?) HIFLJALORT ol
- Count (number of elements, not bytes) "ot double
MPI_C_COMPLEX float _Complex
. Message envelope MPI_C _DOUBLE_COMPLEX double _Complex
= Source MPI_C_BOOL _Bool
= Destination MPI_CHAR char

and many more -> https://www.mpi-forum.org/docs/

= Tag
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MPI_SEND and MP|_RECV

= MPI_Send C/C++ binding:

#include <mpi.h>
int MPI_Send(const void *buf, int count, MPI Datatype datatype,
int dest,int tag, MPI Comm comm)

= MPI_Recv C/C++ binding:

#include <mpi.h>

int MPI_Recv(void *buf, int count, MPI Datatype datatype,
int source,int tag, MPI Comm comm,
MPI Status *status)

= puf: address of the first entry of the buffer to be sent
= count: number of elements to be sent (note that it is not bytes!)

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14
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Single-round ping-pong in C

#include <mpi.h>

#include <stdio.h> I‘ank 1

int main(int argc, char **argv) {

int ierr, irank, nrank; ([@))

MPI_Status status; CCD c 8) c

double d=6.0; —_ 8 e~ 8

ierr=MPI_Init(&argc,&argv);

ierr=MPI_Comm_rank(MPI_COMM_WORLD,&irank);

ierr=MPI_Comm_size(MPI_COMM_WORLD,&nrank); rank O

if(irank==0) d=100.0; @ ® ®

if(irank==1) d=200.0;

printf("BEFORE: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d); A deadlock is a Scenario in Wh|Ch a

if(irank==0) { . .
MPI_Send(&d,1,MPI_DOUBLE,1,11,MPI_COMM_WORLD); Process Is trymg to eXChan_ge data to
MPI_Recv(&d,1,MPI_DOUBLE,1,22,MPI_COMM_WORLD,&status); another process but there is no match,

}1 ety | e.g. it is ready to send a data but the

else if(irank==1 . .

C MPI_Send(&d,1,MPI_DOUBLE,®,22,MPI_COMM_WORLD); other process 1s not and will not be
MPI_Recv(&d,1,MPI_DOUBLE,,11,MPI_COMM_WORLD,&status); prepared to accept or the opposite

} - - [

printf("AFTER: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d); Case_’ ..e. the process_ls Waltlng 150

ierr=MPT_Finalize(); receive but the other is not sending and

} will not send a matching message.
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How to compile and run an MPI program

= MPI implementations provide wrappers to the compilers, e.g. mpicc

$ mpicc pingpong.c -o pingpong

= To execute the program, one should use startup wrappers such as
mpirun, mpiexec, ... or a job scheduler wrapper like srun

$ mpirun -np 2 ./pingpong

BEFORE: nrank,irank,d = 2 1 200.0
BEFORE: nrank,irank,d = 2 %) 100.0
AFTER: nrank,irank,d = 2 %) 100.0
AFTER: nrank,irank,d = 2 1 100.0

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14
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Example: Shift operation across a chain of processes

circular chain

= Simplistic send/recv
= pairing is not reliable

//my left neighbor

left=(rank-1)%size;

//my right neighbor

right=(rank+1)%size;
MPI_Send(sendbuf,n,type,right,tag,comm);
MPI_Recv(recvbuf,n,type,left,tag,comm,status);

From CPU Core to Supercomputer | G. Hager and A. Ghasemi
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Serialization: Loss of efficiency

= Ring shift communication pattern: non-circular shifts
* No concern over deadlock

 Serialization

= MPI_Send with rendezvous protocol

= MPI_Ssend
I
e R e
o T
Rank >

time
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Calculating Pl with Monte Carlo

* The quarter circle in the first quadrant with origin at
(0,0) and radius 1 has an area of 11/4. We look at the
random number pairs in [0, 1] x [0, 1]. The probability
that such a point lies inside the quarter circle is 11/4,
so given enough statistics we are able to calculate 1
using this “Monte Carlo” method.

one_over_rand_max=1.0/(double)RAND_MAX;

count=0.0;

for(i=0; i<nn; ++i) {
x=rand_r(&seed)*one_over_rand_max;
y=rand_r(&seed)*one_over_rand_max;
if(x*x+y*y <1.0) ++count;

}

pi=4.0*count/(double)nn;
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Calculating Pl with Monte

Carlo

nn=pow(19,9);

n_local=nn/nrank;
if(irank<nn%nrank) n_local+=1; //doing one more point if nrank is

one_over_rand_max=1.0/(double)RAND_MAX;

seed=2+irank;

count= H

for(i=0; i<n_local; ++i) {
x=rand_r(&seed)*one_over_rand_max;
y=rand_r(&seed)*one_over_rand_max;
if(x*x+y*y < ) ++count;

if(9==irank) {
//This is rank=0 and it receives "“count' from all other ranks
for(i=1; i<nrank; ++i) {
MPI_Recv(&val,1,MPI_DOUBLE,i,®,MPI_COMM_WORLD,&status);
count+=val;

}
pi=4.0*count/(double)nn;
printf(accuracy: %14.5E\n",fabs(M_PI-pi)/M_PI);
}
else {
//Every rank except rank=0 should send its ~count' to rank=0
MPI_Send(&count,1,MPI_DOUBLE,®,0,MPI_COMM_WORLD);
}

not a divisor (factor) of nn
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What we have left out

= Point-to-Point communication
« Communication modes
* Non-blocking

= Synchronization

= Collective communication

=  Subcommunicators

= Derived types

= Parallel I/O

= Topology

= Shared memory
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Cool Science




Unconventional Superconductors (A. Buchheit, U Saarland)

Im(A4y) o A(q)
A(k) = Co+UpZp,(k— d
(k) B~£( 0+ UoZu( Q)) 2/ +AQE 1

https://youtu.be/D0O3loILYeTA

R

‘

0.9

SUCCES SESTORY
DR. ANDREA BUCHHEIT

chiral d-+p-wave

0.8}

0.7+ nodal d-wave

Uo

0.6

0.5
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Generative Video Models for Privacy-Preserving Medical Al (B. Kainz, FAU)

Latent (et . Privacy- Latent . Decoded
Generated | -2 "M | Preserving Generated ! Generated S th t d t t f AI
Heart Dataset ' Heart Echocardiogram ! Echocardiogram yn e IC a a Se S Or
414 =14 '4x14x14 12B % 4 = 14 x 14 | 128 = 3 = 112 = 112 . .
ot e |, [Py || | model training
Diffusion Model Filter E Latent Video :
I o s TeTeeted R e oI [{.:md.om Diffusion VAE
anatomy is rejected, sample a new one : Eject?on Model **| Decoder
 Fragtion with Stitching |
Random Number Generator l‘[-‘.F‘): '
L ' - '
1 1
128 = 4 = 14 = 14 64 x4 x 14 x 14 64 x4 x14 x14 330w 4 14 % 14 128 = 4 = 14
Overlaps Zia Batched inference =g, , =i
- o 71 i Latent Video l o =
Z Extract il —rb Dlﬂ’usmn Mndel g il Discard ~ Concatenate non-
t overlapping chunks Zip | Zg 1,0 overlaps W 0\.!1 r]appuu_. chunlks

https://qgithub.com/HReynaud/EchoNet-
Svynthetic?tab=readme-ov-file

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 53


https://github.com/HReynaud/EchoNet-Synthetic?tab=readme-ov-file
https://github.com/HReynaud/EchoNet-Synthetic?tab=readme-ov-file

Friedrich-Alexander-Universitat
N H R FAU Erlangen-Nirnberg
LY/ )\

“I need this — how do | get access?”

J

“fu i H@@KED}




The application process for NHR projects at NHR@FAU

Pl at German
university or U.A.S.

NHR JFAU

Researchers

{ Application ]

External Review

»
[ Technical Review ]
Lo grant
8 access
[ Steering Commitee
\ final ( . .
7 allocation L Decision
- i
End of Project " Report
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Al projects in Bavaria

Researchers at state-funded Bavarian
universities and universities of applied
sciences (HAW, TH, and FH) have
free of charge access to these
current hardware resources via
BayernKl Wissenschatft:

-

LRZ Al Systems

ERZ
. .

" HELMA
NHR@FAU

120 x Nwidia H100

(94 GB'HBM2¢)
g

Wiy ingting g,
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