- %

Friedrich-Alexander-Universitat
E Erlangen-Nirnberg

OTH Regensburg
Fakutat Informatik und Mathematik

January 14, 2026

/
-

Z& 4

Parallel Computing:
From CPU Core to Supercomputer

Georg Hager and Alireza Ghasemi

Erlangen National High Performance Computing Center (NHR@FAU)

The plan

= An old idea that stuck:
The stored-program computer

* Plowing the fields:
CPU cores, chips, and nodes

» Brute-forcing the game: GPUs

= Shooting for the stars:
High-performance networks and
clusters

= Doing “work” in parallel — easy as n?
= The rule of threads: OpenMP

= We need to talk: MPI

= Some “cool” science

Image: NHR@F,&‘yi

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 2

A word about the NHR Alliance and NHR@FAU

= Funding 2021-2030: 62.5 Mio. € p.a.
= ~ 7 Mio. € per center (state+federal)
https://www.nhr-verein.de/en/ = hardware / infrastructure
® = operational costs
® seriin = advanced user support & training

Paderborn G?ttinge” @ N|;|_R/©/|EAU

Onachen w = Powerful HPC infrastructure

Mainz@© = EXxpert user support and user training
Darmstadt @

® Erlangen- = NHR@FAU fields of expertise within NHR
Nurnberg - Atomistic Simulations

Performance Engineering & Tools
= Al Research

Karlsruhe

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

Friedrich-Alexander-Universitat
N H R FAU E Erlangen-Nirnberg
// e\

An old idea that stuck:
| The stored-program computer

The stored-program computer

CPU

Arithmetic

logic

unit

|

|

Input/Output

Memory

Stored-program computer

Front end

Execution engine

Memory

r's

| 66 0f 58 cl
_f__ﬁ (addpd xmm1l,xmm2)
9
2 <
®
= | Instruction fetch |
§ J Mopsy
© |Decoder ‘ ‘ Decoder ‘ | Decoder ‘ | Decoder |
o
o Hops
— had h 4 h 4 Jl
o (e > Reorder buffer / Register renaming |
5 ¢uops
'ug; Scheduler
12 Port0 | [Port1 | [Port2 | | Port3 || Port4 | | Port5
t L P + ~ Lops 4
1/ N h 1/ b 4 b 4
-gm ALU ALU @ //Wt‘ 7 1{/ ALU
Se 4 A
St L rMAC| [EMA) AGU || AGU | | MoV
F s 'y
i DIV IMP
v v v
‘ Memory control ‘
r 3
-
\ 4
e L1 data cache [« » L2 cache

l—

Modern CPU core

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

Fancy features for faster execution

Superscalarity: Multiple instructions per cycle

Fetch Instruction 1
from L1l

Fetch Instruction 5 Decode

time

from L1l Instruction 1

~ -

Fetch Instruction 9 Decode
from L1l Instruction 5

-

Fetch Instruction 13 Decode
from L1l Instruction 9

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

Fancy features for faster execution

Pipelining: Instruction execution in multiple steps

1 2 3 4 5 N N+1 N+2 N+3 N+4
Cycle
Separate B(1)| | B(2)| |B(3)| |B(4)| | B(5) B(N) || -
mant./exp. C(L)| | c(2)] | Cc(3)| |c(a) |C(5) C(N) Wind-down
Multiply B(L)| |B(2)| |B(3)]| | B(4) B-1)| | B(N)
mantissas c(1l) c(2) C(3) Cc(4) c (N-1) C(N)
Add B(1l)| | B(2)| | B(3) B(N-2)| |B(N-1)| | B(N)
exponents Cc(1l) c(2) C(3) c{N-2) |cin-1) C(N)
Normalize A A A
result AL A2) ~N-3) |(v-2) | -1y | BOO
Insert L Wind-up N A A A A
sign [= (1) (N-4)| | (N-3) | (N-2)| | (N-1) | RO

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

Fancy features for faster execution

Single Instruction Multiple Data: Multiple operations per instruction

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

Fancy features for faster execution

Simultaneous Multi-Threading:
Multiple instruction sequences in parallel

i
Zp . —~AV—
SEEE ORI e /
@ mlP . % %77/ - c';lﬁe L 4;,5,3//}5}25?/ T
L2 cache 7
errrin W%
D% Tnzaa’ -
T 7 ZZm
.@ | 7| L7 u 'IDj
I 7, cache 7
oot %%, 275 Hrﬁcontm' =

Execution units

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

— Friedrich-Alexander-Universitat
N H R FAU E Erlangen-Nirnberg
| L//)\

Beyond the core: The cache hierarchy

You can either build a
SEIEE Bandwidth

small and fast memory Latency [s] ovtes/s]
ora 9 o
large and slow memory 10 L1 Cache
L2 Cache
108 L3 Cache
1011
10° 10°

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 11

Beyond a single core: multicore and multisocket

1T :
A%k LiD
Bidk L2
16 MiB L3
TR TR
L3 rou 16 MIB L3
E1EMS
e favia) |BEABES
1d||d |daldld O
AN AN Al -O
L[|l A | A LI RAK CAKA | Rk O
T | T 16 MIB LY i Illllll.lI
LD 1Mo
Tl | s 1| (D
P dlldld]d Ia]
nninnnnnn nninn nnnn :
AzkLiD
Bidk L2 AT AT A Q—
16 MiB L3 PLPLPIP PHPIPIP =
16 MB.LY wmaLa O 3 3 §
RELED g, T E =z
LY | (CRETY) IS | CIAL O | GO | o (e
BEES dildfd|d idld|dd] U
e Al JEEEE)G AlaJafa)fa]a)a]s)
d)RR i1 | K
PlirPipriP Plrlirfip
L g =0
1 | 1 16 MBLY
a0l
o [
M d d|d
C Ip et TEEEEGE

T[]]I

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 12

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg
LY/)\

_| Brute-forcing the game: GPUs

Image: NVIDIA

Why GPUs?

CPUs spend die area on

= ... fancy core features to make
serial code fast

= ... lots of cache to mitigate
memory delays

GPUs spend die area on

= .. execution resources to boost
computational performance

Control

ALU

ALU

CPU

GPU

ALU

ALU

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

14

NVIDIA H100 SXMS5 (80 billion transistors)

ERp— [———
Rugintr Fie (16364 % 2001 Rogurar il (16384 x 3200

Memory Controller
saljonuod Aloway

bt LEEEEEFEFEEERE

Memory Controller
19)j01U09 Aowal

RuginteFie (18,304 1 220

FLE

B

3%
HH

Memory Controller
Jeponuo) Klowa

EEEEEEEH

S H
° 3
5 g
5 <
o (e}
2]
o =
E g
2 H

Memory Controller
19)j01u07 Alowaw

Memory Controller
1aj0u03 Kioway

1+
NVLink NVLink NVLink

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

A compute node with GPUs

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

16

Friedrich-Alexander-Universitat
N H R FAU Erlangen-Nirnberg
LY/)\

Shooting for the stars:
High-performance networks and clusters

=i
&7

-~

Image: NHR@FA

Overall cluster structure

communication network

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

18

https://creativecommons.org/licenses/by-sa/3.0/deed.en

Network structures

Bus " Fat tree Dragonfly

ndlih filh 2

6 s e A
2D torus | i %3
aHelele S

1 "RV o

L AL JiL B8) A
L an. . SRR P
LSl m i o

SW 1

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

Friedrich-Alexander-Universitat
N H R FAU E Erlangen-Nirnberg
// e\

Doing “work” in parallel — easy as n?

What is “performance™?

Performance metric:

B Work /

Time

P

<

.

SJlops® (+-*/)
lattice points
“runs”

“Solving the problem’

s

Speedup with n
workers:

P(n)
P(1)

S(n) =

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14 21

Theoretical peak performance of a supercomputer

“Fugaku” — #1 in the world from 2020-2022
Still #7 today (top500.0rg/)

10° clock cycles FP64 operations e | |
per second (GHz) per cycle and core .

Cores per CPU
CPUs
(nodes) I\
GFlops PFlops

P = 158976 X 48 x 2,2 X 32 - ~ 537 -

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 22

https://top500.org/

Can everything be parallelized?

1 core

2 cores

4x more 4 cores
resources

e

n %) n
o
- o
g

\

Computer History Museum

2.5X
\ / 10s
Y4 faster
4s
From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 23

Other impediments

Communication, synchronization, load imbalance

Core 1

Core 2

Core 3

Core 4

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

24

Getting down to it — calculating = with multiple threads

1
_f 4 q
= 1+x2x
0

4.0 + '--...\ — fix)= ﬁ

35 4 \ Areafrom 0 to1
30+ \

25 1 NC

=] - \
15 4

104

x)
(3%
o
Q.
X

0.5 4

0.0

-050 -025 000 025 050 075 100 125 150
X

double pi,dx,sum;
int N=10000000;
pi = 0.; dx = 1.0/N; sum = O.;
#pragma omp parallel
{
#pragma omp for reduction(+:sum)
for(int i=0; i<N; ++i) {
double x = dx*(i+0.5);
sum += 4./(1. + Xx*X);
}
}

pi = sum * dx;

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14 25

Performance and scalability: food for thought

: : 50 ' | ' | ' |
= Serial performance =~ 0.93 Git/s

- median @
= Good speedup (S(n) = n) at (10 runs)

low thread counts

N
o

w
o
|

|

|

©

\\
=&

= Some loss of scalability at high
thread counts

no
o
I
-
el
|

Performance [Git/s]
=
>
="
N
—)

= Significant statistical variations 101 Intel Xeon® -
at larger thread counts ! @ Platinum 8470
o .+ L
10 20 30 40 50
threads

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 26

Friedrich-Alexander-Universitat
N H R FAU E Erlangen-Nirnberg
// e\

The rule of threads: OpenMP

https://www.openmp.org/

OpenMP fork-join model

Used mainly via compiler directives...

#pragma omp <directive> [<clause>[, <clause>[...]]]

initial thread thread thread
. . thread
serial
. execution
... and some API functions ... fork
llel
int thread id = omp get thread num() ; e&ii&m
barrier w 4
... and some environment variables: . join _
serial parallel region
execution fork
$ gcc —fopenmp code.c
parallel
$ OMP_NUM_THREADS=4 . /a.Out execution barrier v v v
serial join
execution
threadids O 1 2 3
2026-01-14 28

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

OpenMP “Hello World”

#include <stdio.h> $ gcc —fopenmp code.c
#include <omp.h> $ OMP_NUM THREADS=4 ./a.out
Sequential part
int main(int argc, char *argv[]) Thread 1 of 4
{ Thread 3 of 4
printf ("Sequential part\n") ; Thread 2 of 4
Thread 0 of 4
#pragma omp parallel Sequential part again
{ $ OMP_NUM THREADS=6 ./a.out
printf (“Thread %d of %d\n", Sequential part
omp get thread num(), Thread 0 of 6
omp get num threads()) ; Thread 1 of 6
} Thread 5 of 6
printf ("Sequential part again\n") ; Thread 4 of 6
return O; Thread 2 of 6
} Thread 3 of 6

Sequential part again

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

Sharing the work among threads

?pragma omp parallel Support for reductions:

Work is -0 -
#pragma omp for spread (jsuble sum=0. ;

for (int i = 0; i < n; ++i .« o
g - blil:) 1 across #pragma omp parallel reduction(+:sum)
ali] = b[il; threads {
} g in team #pragma omp for
for (int i = 0; 1 < n; ++1i) {
sum += af[i];
Critical regions } }

#pragma omp parallel
{
#pragma omp for
for (int i = 0; i < n; ++1i) {
#pragma omp critical
sum += device_read();
}
}

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

Advanced OpenMP: tasking

E *anchor = ... // linked list

#pragma omp parallel
{

#pragma omp single

{
for(E *ptr=anchor; ptr!=NULL; ptr=ptr->next) { One
#pragma omp task thread fills
do_stuff_with_data(ptr->payload); “queue of
} tasks”
} // <-- implicit barrier here /

}

Other threads waiting and
working on tasks in queue

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

31

Advanced OpenMP: device offloading

double pi,dx,sum;

int N=10000000;

pi = 0.; dx = 1.0/N; sum = O.;

#pragma omp target loop reduction(+:sum)

for(int i=0; i<N; ++i) {
double x = dx*(i+0.5);
sum += 4./(1. + x*x);

}

pi = sum * dx; Offload loop to
GPU

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

32

OpenMP: What we have left out

= Data scoping (thread-private/shared data structures)

= Loop scheduling (which thread does what)

= Advanced synchronization (atomics, locks)

= Advanced tasking (taskloops, dependencies)

= SIMD support (vectorizing loops and functions)

= Advanced offloading (asynchronous execution, tasks, dependencies)
= Execution modalities (thread affinity, memory affinity)

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

33

Friedrich-Alexander-Universitat
N H R FAU E Erlangen-Nirnberg
// e\

Message Passing Interface (MPI)

The message passing paradigm

Distributed-memory architecture: P P P P P
c c c c C
= Each process(or) can only access its | Message - ' ' '
dedicated address space. Ml ™M) M
[N] [N~] [N I] NI

= No global shared address space

» Data exchange and communication Communication netv'ork
between processes Is done by p———
explicitly passing messages through a
communication network

MPI

Message passing library:
= Should be flexible, efficient and portable

= Hide communication, hardware and
software layers from application developer

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 35

The message passing paradigm

= Message Passing Interface (MPI): Widely accepted
standard in HPC

= The program is written in a sequential language
(Fortran/C[++]), but ...

= Data exchange between processes:
- Send/receive messages via MPI library calls
- No automatic workload distribution

= The MPI standard

- MPI forum — defines MPI standard/library components
- http://www.mpi-forum.org/

= Latest version: MPI 5.0, Release 05.06.2025 (libraries ?)
= Libraries: MPICH, mvapich, OpenMPI, ... and Intel, Cray, HP,...

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 36

http://www.mpi-forum.org/

Parallel execution in MPI

= Processes run throughout program execution
Program startup

= MPI Point-to-point communication:
= pbetween pairs of tasks/processes

= MPI Collective communication:
= petween all processes or a subgroup
= parrier, reductions, scatter/gather

< o —

v vV v Vv W " Cleanshutdown by MPI
Program shutdown

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

37

Point-to-Point Communication

It is @ communication between two processes where a sender (source
process) sends message to a receiver (destination process).

= Procedure (C/C++ binding, Fortran Basic Datatypes (C/C++)

binding, Fortran 2008 binding)

= Message data MPLINT int
= Buffer (address) MPI_UNSIGNED unsigned int
= Datatype (basic or derived?) HIFLJALORT ol
- Count (number of elements, not bytes) "ot double
MPI_C_COMPLEX float _Complex
. Message envelope MPI_C _DOUBLE_COMPLEX double _Complex
= Source MPI_C_BOOL _Bool
= Destination MPI_CHAR char

and many more -> https://www.mpi-forum.org/docs/

= Tag

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 40

MPI_SEND and MP|_RECV

= MPI_Send C/C++ binding:

#include <mpi.h>
int MPI_Send(const void *buf, int count, MPI Datatype datatype,
int dest,int tag, MPI Comm comm)

= MPI_Recv C/C++ binding:

#include <mpi.h>

int MPI_Recv(void *buf, int count, MPI Datatype datatype,
int source,int tag, MPI Comm comm,
MPI Status *status)

= puf: address of the first entry of the buffer to be sent
= count: number of elements to be sent (note that it is not bytes!)

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

41

Single-round ping-pong in C

#include <mpi.h>

#include <stdio.h> I‘ank 1

int main(int argc, char **argv) {

int ierr, irank, nrank; ([@))

MPI_Status status; CCD c 8) c

double d=6.0; —_ 8 e~ 8

ierr=MPI_Init(&argc,&argv);

ierr=MPI_Comm_rank(MPI_COMM_WORLD,&irank);

ierr=MPI_Comm_size(MPI_COMM_WORLD,&nrank); rank O

if(irank==0) d=100.0; @ ® ®

if(irank==1) d=200.0;

printf("BEFORE: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d); A deadlock is a Scenario in Wh|Ch a

if(irank==0) { . .
MPI_Send(&d,1,MPI_DOUBLE,1,11,MPI_COMM_WORLD); Process Is trymg to eXChan_ge data to
MPI_Recv(&d,1,MPI_DOUBLE,1,22,MPI_COMM_WORLD,&status); another process but there is no match,

}1 ety | e.g. it is ready to send a data but the

else if(irank==1 . .

C MPI_Send(&d,1,MPI_DOUBLE,®,22,MPI_COMM_WORLD); other process 1s not and will not be
MPI_Recv(&d,1,MPI_DOUBLE,,11,MPI_COMM_WORLD,&status); prepared to accept or the opposite

} - - [

printf("AFTER: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d); Case_’ ..e. the process_ls Waltlng 150

ierr=MPT_Finalize(); receive but the other is not sending and

} will not send a matching message.

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 42

How to compile and run an MPI program

= MPI implementations provide wrappers to the compilers, e.g. mpicc

$ mpicc pingpong.c -o pingpong

= To execute the program, one should use startup wrappers such as
mpirun, mpiexec, ... or a job scheduler wrapper like srun

$ mpirun -np 2 ./pingpong

BEFORE: nrank,irank,d = 2 1 200.0
BEFORE: nrank,irank,d = 2 %) 100.0
AFTER: nrank,irank,d = 2 %) 100.0
AFTER: nrank,irank,d = 2 1 100.0

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14

43

Example: Shift operation across a chain of processes

circular chain

= Simplistic send/recv
= pairing is not reliable

//my left neighbor

left=(rank-1)%size;

//my right neighbor

right=(rank+1)%size;
MPI_Send(sendbuf,n,type,right,tag,comm);
MPI_Recv(recvbuf,n,type,left,tag,comm,status);

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14 46

Serialization: Loss of efficiency

= Ring shift communication pattern: non-circular shifts
* No concern over deadlock

 Serialization

= MPI_Send with rendezvous protocol

= MPI_Ssend
I
e R e
o T
Rank >

time

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

47

Calculating Pl with Monte Carlo

* The quarter circle in the first quadrant with origin at
(0,0) and radius 1 has an area of 11/4. We look at the
random number pairs in [0, 1] x [0, 1]. The probability
that such a point lies inside the quarter circle is 11/4,
so given enough statistics we are able to calculate 1
using this “Monte Carlo” method.

one_over_rand_max=1.0/(double)RAND_MAX;

count=0.0;

for(i=0; i<nn; ++i) {
x=rand_r(&seed)*one_over_rand_max;
y=rand_r(&seed)*one_over_rand_max;
if(x*x+y*y <1.0) ++count;

}

pi=4.0*count/(double)nn;

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

48

Calculating Pl with Monte

Carlo

nn=pow(19,9);

n_local=nn/nrank;
if(irank<nn%nrank) n_local+=1; //doing one more point if nrank is

one_over_rand_max=1.0/(double)RAND_MAX;

seed=2+irank;

count= H

for(i=0; i<n_local; ++i) {
x=rand_r(&seed)*one_over_rand_max;
y=rand_r(&seed)*one_over_rand_max;
if(x*x+y*y <) ++count;

if(9==irank) {
//This is rank=0 and it receives "“count' from all other ranks
for(i=1; i<nrank; ++i) {
MPI_Recv(&val,1,MPI_DOUBLE,i,®,MPI_COMM_WORLD,&status);
count+=val;

}
pi=4.0*count/(double)nn;
printf(accuracy: %14.5E\n",fabs(M_PI-pi)/M_PI);
}
else {
//Every rank except rank=0 should send its ~count' to rank=0
MPI_Send(&count,1,MPI_DOUBLE,®,0,MPI_COMM_WORLD);
}

not a divisor (factor) of nn

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

49

What we have left out

= Point-to-Point communication
« Communication modes
* Non-blocking

= Synchronization

= Collective communication

= Subcommunicators

= Derived types

= Parallel I/O

= Topology

= Shared memory

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

2026-01-14

50

Friedrich-Alexander-Universitat
N H R FAU E Erlangen-Nirnberg
// e\

Cool Science

Unconventional Superconductors (A. Buchheit, U Saarland)

Im(A4y) o A(q)
A(k) = Co+UpZp,(k— d
(k) B~£(0+ UoZu(Q)) 2/ +AQE 1

https://youtu.be/D0O3loILYeTA

R

‘

0.9

SUCCES SESTORY
DR. ANDREA BUCHHEIT

chiral d-+p-wave

0.8}

0.7+ nodal d-wave

Uo

0.6

0.5

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 52

https://youtu.be/D03loILYeTA

Generative Video Models for Privacy-Preserving Medical Al (B. Kainz, FAU)

Latent (et . Privacy- Latent . Decoded
Generated | -2 "M | Preserving Generated ! Generated S th t d t t f AI
Heart Dataset ' Heart Echocardiogram ! Echocardiogram yn e IC a a Se S Or
414 =14 '4x14x14 12B % 4 = 14 x 14 | 128 = 3 = 112 = 112 . .
ot e |, [Py || | model training
Diffusion Model Filter E Latent Video :
I o s TeTeeted R e oI [{.:md.om Diffusion VAE
anatomy is rejected, sample a new one : Eject?on Model **| Decoder
 Fragtion with Stitching |
Random Number Generator l‘[-‘.F‘): '
L ' - '
1 1
128 = 4 = 14 = 14 64 x4 x 14 x 14 64 x4 x14 x14 330w 4 14 % 14 128 = 4 = 14
Overlaps Zia Batched inference =g, , =i
- o 71 i Latent Video l o =
Z Extract il —rb Dlﬂ’usmn Mndel g il Discard ~ Concatenate non-
t overlapping chunks Zip | Zg 1,0 overlaps W 0\.!1 r]appuu_. chunlks

https://qgithub.com/HReynaud/EchoNet-
Svynthetic?tab=readme-ov-file

From CPU Core to Supercomputer | G. Hager and A. Ghasemi 2026-01-14 53

https://github.com/HReynaud/EchoNet-Synthetic?tab=readme-ov-file
https://github.com/HReynaud/EchoNet-Synthetic?tab=readme-ov-file

Friedrich-Alexander-Universitat
N H R FAU Erlangen-Nirnberg
LY/)\

“I need this — how do | get access?”

J

“fu i H@@KED}

The application process for NHR projects at NHR@FAU

Pl at German
university or U.A.S.

NHR JFAU

Researchers

{ Application]

External Review

»
[Technical Review]
Lo grant
8 access
[Steering Commitee
\ final (. .
7 allocation L Decision
- i
End of Project " Report

https://nhr.fau.de/

https://nhr.fau.de/

Al projects in Bavaria

Researchers at state-funded Bavarian
universities and universities of applied
sciences (HAW, TH, and FH) have
free of charge access to these
current hardware resources via
BayernKl Wissenschatft:

-

LRZ Al Systems

ERZ
. .

" HELMA
NHR@FAU

120 x Nwidia H100

(94 GB'HBM2¢)
g

Wiy ingting g,
y ."".'H' “Antadey ."‘,“

200 X Nvidia100

(94 GB HBM2e)

s
5
.

e

SN L o R TR
it ST

LW)

Lil

BAYERN ¢

https://www.ki-in-bayern.de/

‘@

HIGHTECH

Agenda Bayern

Focus is on Al research (training,
methodology), not inference

2026-01-14

56

From CPU Core to Supercomputer | G. Hager and A. Ghasemi

https://www.ki-in-bayern.de/

Friedrich-Alexander-Universitat
N H R FAU E Erlangen-Nirnberg
// e\

Thank you.

https://nhr.fau.de/

	Folie 1: Parallel Computing: From CPU Core to Supercomputer Georg Hager and Alireza Ghasemi Erlangen National High Performance Computing Center (NHR@FAU)
	Folie 2: The plan
	Folie 3: A word about the NHR Alliance and NHR@FAU
	Folie 4: An old idea that stuck: The stored-program computer
	Folie 5: The stored-program computer
	Folie 6: Fancy features for faster execution
	Folie 7: Fancy features for faster execution
	Folie 8: Fancy features for faster execution
	Folie 9: Fancy features for faster execution
	Folie 10: Plowing the fields: CPU cores, chips, and nodes
	Folie 11: Beyond the core: The cache hierarchy
	Folie 12: Beyond a single core: multicore and multisocket
	Folie 13: Brute-forcing the game: GPUs
	Folie 14: Why GPUs?
	Folie 15: NVIDIA H100 SXM5 (80 billion transistors)
	Folie 16: A compute node with GPUs
	Folie 17: Shooting for the stars: High-performance networks and clusters
	Folie 18: Overall cluster structure
	Folie 19: Network structures
	Folie 20: Doing “work” in parallel – easy as 𝜋?
	Folie 21: What is “performance”?
	Folie 22: Theoretical peak performance of a supercomputer
	Folie 23: Can everything be parallelized?
	Folie 24: Other impediments
	Folie 25: Getting down to it – calculating 𝜋 with multiple threads
	Folie 26: Performance and scalability: food for thought
	Folie 27: The rule of threads: OpenMP
	Folie 28: OpenMP fork-join model
	Folie 29: OpenMP “Hello World”
	Folie 30: Sharing the work among threads
	Folie 31: Advanced OpenMP: tasking
	Folie 32: Advanced OpenMP: device offloading
	Folie 33: OpenMP: What we have left out
	Folie 34: Message Passing Interface (MPI)
	Folie 35: The message passing paradigm
	Folie 36: The message passing paradigm
	Folie 37: Parallel execution in MPI
	Folie 40: Point-to-Point Communication
	Folie 41: MPI_SEND and MPI_RECV
	Folie 42: Single-round ping-pong in C
	Folie 43: How to compile and run an MPI program
	Folie 46: Example: Shift operation across a chain of processes
	Folie 47: Serialization: Loss of efficiency
	Folie 48: Calculating PI with Monte Carlo
	Folie 49: Calculating PI with Monte Carlo
	Folie 50: What we have left out
	Folie 51: Cool Science
	Folie 52: Unconventional Superconductors (A. Buchheit, U Saarland)
	Folie 53: Generative Video Models for Privacy-Preserving Medical AI (B. Kainz, FAU)
	Folie 54: “I need this – how do I get access?”
	Folie 55: The application process for NHR projects at NHR@FAU
	Folie 56: AI projects in Bavaria
	Folie 57: Thank you. https://nhr.fau.de/

