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Abstract
In this report, we describe the optimization procedure of a MPI parallelized code that de-

veloped based on C++ to solve the granular flow hydrodynamics. The optimizations includes
single-core and multi-core MPI optimizations. In this regard, we used mainely the LIKWID and
the ITAC profiling tools to track each step of the optimizations. The improvements include the
inlining of the functions, memory management and eliminating expensive operations which we
will discuss them with more details. At the end we provide efficiency measurements and suggest
further optimizations for future studies.

1 Introduction
The hydrodynamic equations of the granular flow, describes the system by average field variables
like particle number density n(r⃗, t), flow velocity u⃗(r⃗, t) and temperature T (r⃗, t). The time evolution
of these quantities are governed by hydrodynamic equations [1]

∂n

∂t
+∇ · (nu⃗) = 0,

n

(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗

)
= − 1

m
∇ · P+ ng⃗,

n

(
∂T

∂t
+ (u⃗ · ∇)T

)
= −∇ · q⃗ − P : ∇u⃗− ζnT.

(1)

Along with equations (1) the constitutive equations should be also provided. In above equations
Pij is the stress tensor, q⃗ is the heat flux, F⃗ is external body force, m is the mass of a single grain
and ζ describes the rate of energy loss due to dissipative nature of granular gas. To Navier-Stokes
order, the stress tensor and heat flux are given by Pij = pδij − η(∂iuj + ∂jui − 2

3δij∇ · u⃗)− γδij∇ · u⃗
and q⃗ = −κ∇T − µ∇n, where p is hydrostatic pressure, η is shear viscosity, γ is bulk viscosity, κ is
thermal conductivity and µ is a coefficient that relates heat transfer to density gradient.
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The hydrodynamic equations (1) can be writen in terms of conservtive variables: density, n,
momentum density, nu⃗ and energy density, nE = n( 12mu⃗ 2 + 3

2T ). These new variables fulfill
conservation of mass, momentum and energy respectively:

∂n

∂t
+∇ · (nu⃗) = 0,

∂(nu⃗)

∂t
+∇ ·

[
u⃗nu⃗ T +

p

m
I
]
=

1

m
∇ · τ + ng⃗,

∂(nE)

∂t
+∇ · [(nE + p)u⃗] = ∇ · [τ · u⃗− q⃗] +mnv⃗ · g⃗ − 3

2
nζT.

(2)

where I is the identity matrix. It can be shown that formulation (1) and (2) lead to different solutions
in the presence of shock waves [8]. In addition, Hou and Le Floch [3] shown that non-conservative
schemes do not converge to the correct solution in the presence of shock waves. Therefore, it is
inevitable to work with conservative formulation (2), since shocks appear frequently in granular
systems.

For the sake of brevity, the conservative formulation can be written in a compact form

∂U

∂t
+∇ · F⃗ c(U) = ∇ · F⃗ ν(U,∇U) + S(U), (3)

by introducing the vector of conservative variables U = (U1, U2, U3, U4, U5)
T , the convective fluxes

F⃗ c = (F c
x , F

c
y , F

c
z )

T , and the diffusive fluxes F⃗ ν = (F ν
x , F

ν
y , F

ν
z )

T . Eq. (3) is a subset of convection-
diffusion equations. While diffusive processes affects the field variables along its gradient in all
direction, convection propagate the fields only in flow direction [9]. Therefore, it is difficult to
design a single robust scheme that can handle all possible balances of the convection and diffusion
effects [2]. Splitting methods allow us to overcome this difficulty, since they make it possible to
utilize different efficient schemes that are developed specifically for each convection and diffusion
problems.

Let Sc
∆t denote the exact solution operator of the corresponding convective problem, ∂tU +∇ ·

Fc(U) = 0, which propagates the solution U(t) by one timestep, U(t+∆t) = Sc
∆tU(t). Likewise, let

Sν
∆t denote the exact solution operator, that propagates the solution U(t) of the following diffusive

problem with sources, ∂tU+∇·Fν(U,∇U) = S(U), to a later time t+∆t. Then, the Strang splitting
scheme [6] gives us the combined solution of the convection-diffusion problem (Eq. (3)):

U(t+∆t) =
[
Sc
∆t/2S

ν
∆tSc

∆t/2

]
U(t). (4)

The splitting scheme (4) is used in our current code.

2 Single-core optimizations
The problem that we chose as the test case is usually called Bouncing bed in literature. To simulate
this problem, we discretized our simulation domain into a cartesian mesh of 5× 40× 5 size. We are
interested in 100 timesteps of this simulation. The choice of this small domain is to save computation
time for the single-core optimizations. We will study larger systems when we move to multi-core
optimizations.

We need a measure to check the validity of the code after each optimization. For this reason, we
compute the L1-norm which returns the difference in solution compared to the reference result. If
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Xi denotes the reference solution over the whole mesh and xi denotes the same solution but for the
modified code, then for a cartesian mesh the L1-norm is defined as

L1-norm =
1

N

N∑
i=1

|xi −Xi| (5)

where N is the mesh size. We expect this quantity to be zero since the optimizations should not
change the results.

As the first candidate for improvement, we tried to inline the functions that are called most
frequently. We found that the Intel compiler flag -ipo does the inlining perfectly. After this change
the functions like VecOperations::operator*(double, Vec5 const&) disappear from the
gprof profile and the performance improves by about 34 percent.

We used the Library of Iterative Solvers for Linear Systems (LIS) to solve the linear equations
resulting from the diffusion equation. In the profile of the code, there was a serious bottleneck
in lis_realloc function. By looking at the code we found out that an unnecessary alloca-
tion and deallocatin is happening every time step. To fix this issue, all allocations are moved to
DiffusiveFlux() constructor, which will be called after initializing the Simulation class. In
addition, all deallocations are moved to the ~DiffusiveFlux() destructor which will be called
at the end of simulation. After this change the code runs 7 times faster.

The next candidates for optimizations were the WENO function Weno::compute_omega()
which computes the interpolation weights, the equation of state for the pressure EquationsOfState
::pressure() and the MUSTA flux terms. Since, the divisions are more expensive than multi-
plications, the idea is to avoid unnecessary divisions in this expensive functions. These changes
improved the performance by about 35 percent.

With all these improvements the code operates about 14.6 times faster than the initial version.
The gprof profile of the optimized code is as follows:

Each sample counts as 0.01 seconds.
% cumulative self

time seconds calls ms/call name
35.27 3.31 25452000 0.00 Weno::compute_omega(double, double, double, Stencil)
9.02 4.15 96601248 0.00 EquationsOfState::pressure(double, double)
8.43 4.94 lis_matvech_csr
8.16 5.71 606 1.26 Weno::find_gauss_legendre_points(Cell*, int)
7.15 6.38 lis_matvec_csr
5.76 6.92 3577824 0.00 Musta::musta_Gc(Vec5, Vec5, double)
5.28 7.41 3577824 0.00 Musta::musta_Hc(Vec5, Vec5, double)
3.79 7.77 3577824 0.00 Musta::musta_Fc(Vec5, Vec5, double)
3.31 8.08 606 0.51 Weno::find_intermediate_points(Cell*, int)
2.45 8.31 606 0.38 Weno::find_center_of_surfaces(Cell*, int)

Listing 1: The top expensive functions in the profile of the optimized code. The Weno function that
computes the interpolation weights is responsible for about 35 percent of the total run time.

In the procedure of optimizations, we used LIKWID software and the likwid-perfctr tool
to get information about the memory bandwidth and performance of the current optimized version.
The first option -g DIVIDE gives us information about division operations:
+-----------------------+---------+--------------+
| Event | Counter | Core 0 |
+-----------------------+---------+--------------+
| INSTR_RETIRED_ANY | FIXC0 | 169790500660 |
| CPU_CLK_UNHALTED_CORE | FIXC1 | 103210050216 |
| CPU_CLK_UNHALTED_REF | FIXC2 | 76205325416 |
| ARITH_NUM_DIV | PMC0 | 702778841 |
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| ARITH_FPU_DIV_ACTIVE | PMC1 | 38406839257 |
+-----------------------+---------+--------------+

+---------------------------------+-----------+
| Metric | Core 0 |
+---------------------------------+-----------+
| Runtime (RDTSC) [s] | 36.0019 |
| Runtime unhalted [s] | 46.9131 |
| Clock [MHz] | 2979.6445 |
| CPI | 0.6079 |
| Number of divide ops | 702778841 |
| Avg. divide unit usage duration | 54.6500 |
+---------------------------------+-----------+

Listing 2: The likwid output of the optimized code. It provides information about the number of
divisions.

The second option -g MEM provides information about memory bandwidth. For clarity, we just
report part of the information here
+-----------------------------------+-----------+
| Metric | Core 0 |
+-----------------------------------+-----------+
| Runtime (RDTSC) [s] | 34.4098 |
| Runtime unhalted [s] | 46.4950 |
| Clock [MHz] | 2991.7720 |
| CPI | 0.6078 |
| Memory read bandwidth [MBytes/s] | 36.0318 |
| Memory read data volume [GBytes] | 1.2398 |
| Memory write bandwidth [MBytes/s] | 34.9019 |
| Memory write data volume [GBytes] | 1.2010 |
| Memory bandwidth [MBytes/s] | 70.9337 |
| Memory data volume [GBytes] | 2.4408 |
+-----------------------------------+-----------+

Listing 3: The likwid output with informations about memory bandwidth. This output shows that
the code is not memory bounded.

Finally, the option -g FLOPS_DP reveals the actual performance of the code:
+----------------------+-----------+
| Metric | Core 0 |
+----------------------+-----------+
| Runtime (RDTSC) [s] | 34.0013 |
| Runtime unhalted [s] | 46.0993 |
| Clock [MHz] | 2998.5086 |
| CPI | 0.6075 |
| DP MFLOP/s | 1541.9145 |
| AVX DP MFLOP/s | 0 |
| Packed MUOPS/s | 34.3259 |
| Scalar MUOPS/s | 1473.2627 |
| Vectorization ratio | 2.2769 |
+----------------------+-----------+

Listing 4: The likwid software gives information about floating point operations per second and also
vectorization ratio.
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3 Multi-core optimizations
To benchmark the MPI code, we studied the explosion test [8]. Here we used a cartesian grid of size
48 × 48 × 48, with periodic boundary condition in all directions. The simulation is done after 100
time steps.

In this study we used Intel Trace Analyzer and Collector (ITAC) software, which gives us valuable
information about the MPI code. There is no need to modify the code or rebuild the application. We
just need to add -trace flag to the mpirun command. It is also necessary to run psxevars.sh
script which sets up the environment variables for compilers, Intel MPI Library, and ITAC.

After running the jobfile we see the *.stf files appear in the specified directory. The next
step is to open the main .stf file with the traceanalyzer tool. Then the Trace Analyzer tool
appears. The summary view itself gives us many useful informations about the MPI code (see Fig.
1) By clicking on continue we can see more details such as load balance (see Fig. 2)

Figure 1: The summary view shows the total run time and the percentage of serial code and MPI
calls. The bar chart on right tells us that the MPI_Neighbor_alltoallw is the main MPI call
that needs improvement.

As we can see in Fig. 1 and Fig. 2 the MPI calls take about 29 percent of total time. If we use
more cores the percentage of MPI calls increases due to higher amount of communications.

One of the problems in the initial version of the code is that there is only one function for
communication of the grid cell data which sends all the data during any communication. However,
in different stages of the code only certain part of cell data is necessary to be sent. In other words,
we are sending unnecessary data which can be improved.

A solution to this is to write specialized communication functions that only send necessary
information. We need to implement the following communication functions:

• To send only the conservative variables we use the function communicate_U (Cell*,
MPI_Comm), which is used most frequently (see Fig. 3).

• To send only the quadrature points of the center of faces we use communicate_qpts_center
(Cell*, MPI_Comm) which will be used in after the first step of WENO interpolation (see

Fig. 3).

• To communicate the intermediate quadrature points we use the function
communicate_qpts_intermediate (Cell*, MPI_Comm) which will be used after sec-
ond step of WENO method (see Fig. 3).
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Figure 2: Top: load balance as a bar chart. Bottom: load balance as a pi chart.

• To communicate the gaussian quadrature points which are essential in space integration, we use
communicate_qpts_gauss_legendre (Cell*, MPI_Comm) which will be called after
WENO third step (see Fig. 3).

• To communicate all the data contained in the class Cell we use communicate_all (
Cell*, MPI_Comm) which is only used in the old version of the code and during testing the
MPI communications.

The challenging task to implement the specialized communications, is to consider the compiler
padding. This means that the address of the location in memory that is returned by MPI_Get_address
() function is not necessarily the correct address and the function MPI_Type_create_resized()
should always be called to take care of padding. Fig. 3 shows the code structure after implementing
the specialized MPI communications.

After this changes we measured the parallel efficiency to see how much this change affects the
performance. As it can be seen from Fig. 4 the difference between the normal code with uniform
communication and the optimized code with specialized communications becomes more clear after
using more than 64 cores. The optimized code is about 17 percent more efficient andd about 80
percent faster than the normal code in runtime at 216 cores.

4 Further optimizations
Using schemes that lead to less communications and therefore less overhead, can improve the per-
formance and saves a lot of computational power. As it is also suggested in the proposal of this
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Figure 3: The schematic view of the code structure. The blue color shows the serial part and the red
color shows the MPI communications. The three step WENO method that is used for interpolation
needs three inter-communications.
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Figure 4: Left: the code run-time for normal and optimized versions. Right: parallel efficiency
measured for normal and optimized versions. The optimized version has a better performance at
higher number of cores although it is not very satisfactory.

project, we suggest two solutions to improve the software performance:

• Implement ADER as time integration scheme: ADER is faster, more accurate, higher
order and need less computer memory, compared to the state of art finite volume WENO
schemes [7]. ADER also improves the communication pattern due to the fact that it allows
the design of a single step method that do not use numerical quadrature in time as opposed
to multistep Runge-Kutta time integration method. On the other hand, ADER leads to less
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WENO calls which again improves the performance. Therefore we propose to implement
ADER scheme as our first improvement.

• Develope a one-step WENO interpolation method: A one step construction in which the
interpolant is being reconstructed as a convex combination of biquadratic polynomials, p(x, y),
is suggested for two-dimensional systems [4]. To our knowledge, this method is not generalized
to three-dimensional hyperbolic systems. The advantage of this one step WENO reconstruction
[4], compared to frequently used three step WENO [5] is that it needs only one reconstruction
sweep to obtain the quadrature values in all dimensions. Hence, less communications is required
and the parallel overhead decreases by using the one step method.

5 Summary
In this work, we optimized a granular hydrodynamics flow code. The single-core optimizations lead
to a code that is 14.6 times faster. The MPI optimization improved the efficiency by 17 percent at 216
cores. We believe that further optimizations is possible only by using more efficient algorithms. We
suggest to use ADER scheme as time integration scheme and replacing the three step interpolation
method by a single step method which only needs one communication per interpolation.
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