Georg Hager's Blog

Random thoughts on High Performance Computing

Content

LIKWID marker overhead and “Meltdown” patches

The Marker API of likwid-perfctr lets you count hardware events on your CPU core(s) separately for different execution regions. E.g., in order to count events for a loop, you would use it like this:

#include <likwid.h>

int main(...) {
  // always required once
  LIKWID_MARKER_INIT;
  // ...
  LIKWID_MARKER_START("loop");
  for(int i=0; i<n; ++i) {
    do_some_work();
  }
  LIKWID_MARKER_STOP("loop");
  // ...
  LIKWID_MARKER_CLOSE;
  return 0;
}

An arbitrary number of regions is allowed, and you can use the LIKWID_MARKER_START and LIKWID_MARKER_STOP macros in parallel regions to get per-core readings. The events to be counted are configured on the likwid-perfctr command line. As with anything that is not part of the actual work in a code, one may ask about the cost of the marker API calls. Do they impact the runtime of the code? Does the number of cores play a role? Continue reading

Himeno stencil benchmark: ECM model, SIMD, data layout

In a previous post I have shown how to construct and validate a Roofline performance model for the Himeno benchmark. The relevant findings were:

  • The Himeno benchmark is a rather standard stencil code that is amenable to the well-known layer condition analysis. For in-memory data sets it achieves a performance that is well described by the Roofline model.
  • The performance potential of spatial blocking is limited to about 10% in the saturated case (on a Haswell-EP socket), because the data transfers are dominated by coefficient arrays with no temporal reuse.
  • The large number of concurrent data streams through the cache hierarchy and into memory does not hurt the performance, at least not too much. We had chosen a version of the code which was easy to vectorize but had a lot of parallel data streams (at least 15, probably more if layer conditions are broken).

Some further questions pop up if you want more insight: Is SIMD vectorization relevant at all? Does the data layout matter? What is the single-core performance in relation to the saturated performance, and why? All these questions can be answered by a detailed ECM model, and this is what we are going to do here. This is a long post, so I provide some links to the sections below:

Continue reading